danseith commited on
Commit
d5cc744
·
1 Parent(s): fce4c33

Added custom pipeline with fixed temperature scale.

Browse files
Files changed (1) hide show
  1. app.py +54 -13
app.py CHANGED
@@ -1,11 +1,15 @@
1
  import gradio as gr
2
  import numpy as np
 
3
  from transformers import pipeline, Pipeline
 
 
4
 
5
  unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
6
-
7
  example = 'A crustless [MASK] made from two slices of baked bread'
8
-
 
9
 
10
  def add_mask(text, size=1):
11
  split_text = text.split()
@@ -15,17 +19,54 @@ def add_mask(text, size=1):
15
  return ' '.join(split_text)
16
 
17
 
18
- class TempScalePipe(Pipeline):
19
- def _forward(self, model_inputs):
20
- outputs = self.model(**model_inputs)
21
- return outputs
22
-
23
- def postprocess(self, model_outputs, temp=1e3):
24
- out = model_outputs["logits"] / temp
25
- best_class = out.softmax(-1)
26
- print(out)
27
- probas = np.random.multinomial(1, best_class, 1)
28
- return np.argmax(probas)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
 
31
  def unmask(text):
 
1
  import gradio as gr
2
  import numpy as np
3
+ import torch
4
  from transformers import pipeline, Pipeline
5
+ from transformers.pipelines import PIPELINE_REGISTRY, FillMaskPipeline
6
+ from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM
7
 
8
  unmasker = pipeline("fill-mask", model="anferico/bert-for-patents")
9
+ # unmasker = pipeline("temp-scale", model="anferico/bert-for-patents")
10
  example = 'A crustless [MASK] made from two slices of baked bread'
11
+ example_dict = {}
12
+ example_dict['input_ids'] = example
13
 
14
  def add_mask(text, size=1):
15
  split_text = text.split()
 
19
  return ' '.join(split_text)
20
 
21
 
22
+ class TempScalePipe(FillMaskPipeline):
23
+ def postprocess(self, model_outputs, top_k=5, target_ids=None):
24
+ # Cap top_k if there are targets
25
+ if target_ids is not None and target_ids.shape[0] < top_k:
26
+ top_k = target_ids.shape[0]
27
+ input_ids = model_outputs["input_ids"][0]
28
+ outputs = model_outputs["logits"]
29
+
30
+ masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
31
+ # Fill mask pipeline supports only one ${mask_token} per sample
32
+
33
+ logits = outputs[0, masked_index, :] / 1e3
34
+ probs = logits.softmax(dim=-1)
35
+ if target_ids is not None:
36
+ probs = probs[..., target_ids]
37
+
38
+ values, predictions = probs.topk(top_k)
39
+
40
+ result = []
41
+ single_mask = values.shape[0] == 1
42
+ for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())):
43
+ row = []
44
+ for v, p in zip(_values, _predictions):
45
+ # Copy is important since we're going to modify this array in place
46
+ tokens = input_ids.numpy().copy()
47
+ if target_ids is not None:
48
+ p = target_ids[p].tolist()
49
+
50
+ tokens[masked_index[i]] = p
51
+ # Filter padding out:
52
+ tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
53
+ # Originally we skip special tokens to give readable output.
54
+ # For multi masks though, the other [MASK] would be removed otherwise
55
+ # making the output look odd, so we add them back
56
+ sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
57
+ proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
58
+ row.append(proposition)
59
+ result.append(row)
60
+ if single_mask:
61
+ return result[0]
62
+ return result
63
+
64
+
65
+ PIPELINE_REGISTRY.register_pipeline(
66
+ "temp-scale",
67
+ pipeline_class=TempScalePipe,
68
+ pt_model=AutoModelForMaskedLM,
69
+ )
70
 
71
 
72
  def unmask(text):