DeCRED-ASR / app.py
Lakoc
README bibtex update
d8b0b49
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Available models to choose from
MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"]
DEFAULT_MODEL = MODEL_OPTIONS[1]
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
# Function to initialize pipeline based on model selection
def initialize_pipeline(model_name):
pipe = pipeline(
task="automatic-speech-recognition",
model=model_name,
feature_extractor=model_name,
chunk_length_s=30,
device=device,
trust_remote_code=True
)
pipe.type = "seq2seq"
return pipe
# Initialize the pipeline with a default model (it will be updated after user selects one)
pipe = initialize_pipeline(DEFAULT_MODEL)
pipe.type = "seq2seq"
@spaces.GPU
def transcribe(inputs, selected_model):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
# Update the pipeline with the selected model
pipe = initialize_pipeline(selected_model)
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
@spaces.GPU
def yt_transcribe(yt_url, selected_model, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
# Update the pipeline with the selected model
pipe = initialize_pipeline(selected_model)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
return html_embed_str, text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs="text",
title="Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs="text",
title="Transcribe Audio",
description=(
"Transcribe audio files with the click of a button! Select a model from the dropdown."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs=["html", "text"],
title="Transcribe YouTube",
description=(
"""
### *Currently only works on local instances of this space, as youtube-dl does not function from Hugging Face servers.*
Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown."""
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
gr.Markdown(
"""
## Overview
This space demonstrates the performance of **DeCRED** (**De**coder-**C**entric **R**egularization in **E**ncoder-**D**ecoder) for automatic speech recognition (ASR).
DeCRED enhances model robustness and generalization, particularly in out-of-domain scenarios, by introducing auxiliary classifiers in the decoder layers of encoder-decoder ASR architectures.
## Key Features
- **Auxiliary Classifiers**: DeCRED integrates auxiliary classifiers in the decoder module to regularize training, improving the model’s ability to generalize across domains.
- **Enhanced Decoding**: It proposes two new decoding strategies that leverage auxiliary classifiers to re-estimate token probabilities, resulting in more accurate ASR predictions.
- **Strong Baseline**: Built on the **E-branchformer** architecture, DeCRED achieves competitive word error rates (WER) compared to Whisper-medium and OWSM v3 while requiring significantly less training data and a smaller model size.
- **Out-of-Domain Performance**: DeCRED demonstrates strong generalization, reducing WERs by 2.7 and 2.9 points on the AMI and Gigaspeech datasets, respectively.
## Disclaimer
This space currently runs on basic CPU hardware, so generation might take a bit longer (approximately four times the length of the audio).
You can clone the repository and run it locally for better performance.
Please refer to the [Hugging Face documentation](https://huggingface.co/docs/hub/spaces-overview#clone-the-repository)
for instructions on how to clone the repository and run it locally.
The model is not perfect and may make errors, so please use it responsibly.
## Explore the Models
- [DeCRED Base](https://huggingface.co/BUT-FIT/DeCRED-base)
- [DeCRED Small](https://huggingface.co/BUT-FIT/DeCRED-small)
- [ED Base](https://huggingface.co/BUT-FIT/ED-base)
- [ED Small](https://huggingface.co/BUT-FIT/ED-small)
## Citation
If you use DeCRED in your research, please cite the following paper:
```bibtex
@misc{polok2024improvingautomaticspeechrecognition,
title={Improving Automatic Speech Recognition with Decoder-Centric Regularisation in Encoder-Decoder Models},
author={Alexander Polok and Santosh Kesiraju and Karel Beneš and Lukáš Burget and Jan Černocký},
year={2024},
eprint={2410.17437},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2410.17437},
}
```
"""
)
demo.queue().launch(ssr_mode=False)