Spaces:
Sleeping
Sleeping
import spaces | |
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
import time | |
# Available models to choose from | |
MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"] | |
DEFAULT_MODEL = MODEL_OPTIONS[1] | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Function to initialize pipeline based on model selection | |
def initialize_pipeline(model_name): | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model_name, | |
feature_extractor=model_name, | |
chunk_length_s=30, | |
device=device, | |
trust_remote_code=True | |
) | |
pipe.type = "seq2seq" | |
return pipe | |
# Initialize the pipeline with a default model (it will be updated after user selects one) | |
pipe = initialize_pipeline(DEFAULT_MODEL) | |
pipe.type = "seq2seq" | |
def transcribe(inputs, selected_model): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
# Update the pipeline with the selected model | |
pipe = initialize_pipeline(selected_model) | |
text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
return text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, selected_model, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
# Update the pipeline with the selected model | |
pipe = initialize_pipeline(selected_model) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
return html_embed_str, text | |
demo = gr.Blocks(theme=gr.themes.Ocean()) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath"), | |
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
], | |
outputs="text", | |
title="Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
], | |
outputs="text", | |
title="Transcribe Audio", | |
description=( | |
"Transcribe audio files with the click of a button! Select a model from the dropdown." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL) | |
], | |
outputs=["html", "text"], | |
title="Transcribe YouTube", | |
description=( | |
""" | |
### *Currently only works on local instances of this space, as youtube-dl does not function from Hugging Face servers.* | |
Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown.""" | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
gr.Markdown( | |
""" | |
## Overview | |
This space demonstrates the performance of **DeCRED** (**De**coder-**C**entric **R**egularization in **E**ncoder-**D**ecoder) for automatic speech recognition (ASR). | |
DeCRED enhances model robustness and generalization, particularly in out-of-domain scenarios, by introducing auxiliary classifiers in the decoder layers of encoder-decoder ASR architectures. | |
## Key Features | |
- **Auxiliary Classifiers**: DeCRED integrates auxiliary classifiers in the decoder module to regularize training, improving the model’s ability to generalize across domains. | |
- **Enhanced Decoding**: It proposes two new decoding strategies that leverage auxiliary classifiers to re-estimate token probabilities, resulting in more accurate ASR predictions. | |
- **Strong Baseline**: Built on the **E-branchformer** architecture, DeCRED achieves competitive word error rates (WER) compared to Whisper-medium and OWSM v3 while requiring significantly less training data and a smaller model size. | |
- **Out-of-Domain Performance**: DeCRED demonstrates strong generalization, reducing WERs by 2.7 and 2.9 points on the AMI and Gigaspeech datasets, respectively. | |
## Disclaimer | |
This space currently runs on basic CPU hardware, so generation might take a bit longer (approximately four times the length of the audio). | |
You can clone the repository and run it locally for better performance. | |
Please refer to the [Hugging Face documentation](https://huggingface.co/docs/hub/spaces-overview#clone-the-repository) | |
for instructions on how to clone the repository and run it locally. | |
The model is not perfect and may make errors, so please use it responsibly. | |
## Explore the Models | |
- [DeCRED Base](https://huggingface.co/BUT-FIT/DeCRED-base) | |
- [DeCRED Small](https://huggingface.co/BUT-FIT/DeCRED-small) | |
- [ED Base](https://huggingface.co/BUT-FIT/ED-base) | |
- [ED Small](https://huggingface.co/BUT-FIT/ED-small) | |
## Citation | |
If you use DeCRED in your research, please cite the following paper: | |
```bibtex | |
@misc{polok2024improvingautomaticspeechrecognition, | |
title={Improving Automatic Speech Recognition with Decoder-Centric Regularisation in Encoder-Decoder Models}, | |
author={Alexander Polok and Santosh Kesiraju and Karel Beneš and Lukáš Burget and Jan Černocký}, | |
year={2024}, | |
eprint={2410.17437}, | |
archivePrefix={arXiv}, | |
primaryClass={eess.AS}, | |
url={https://arxiv.org/abs/2410.17437}, | |
} | |
``` | |
""" | |
) | |
demo.queue().launch(ssr_mode=False) | |