Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
4 |
+
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
|
9 |
+
# Load the model and processor
|
10 |
+
model_path = "deepseek-ai/Janus-Pro-7B"
|
11 |
+
config = AutoConfig.from_pretrained(model_path)
|
12 |
+
language_config = config.language_config
|
13 |
+
language_config._attn_implementation = 'eager'
|
14 |
+
|
15 |
+
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_path,
|
17 |
+
language_config=language_config,
|
18 |
+
trust_remote_code=True
|
19 |
+
)
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
|
22 |
+
else:
|
23 |
+
vl_gpt = vl_gpt.to(torch.float16)
|
24 |
+
|
25 |
+
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
26 |
+
tokenizer = vl_chat_processor.tokenizer
|
27 |
+
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
28 |
+
|
29 |
+
# Helper functions
|
30 |
+
def generate(input_ids, width, height, cfg_weight=5, temperature=1.0, parallel_size=5, patch_size=16):
|
31 |
+
torch.cuda.empty_cache()
|
32 |
+
|
33 |
+
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
|
34 |
+
for i in range(parallel_size * 2):
|
35 |
+
tokens[i, :] = input_ids
|
36 |
+
if i % 2 != 0:
|
37 |
+
tokens[i, 1:-1] = vl_chat_processor.pad_id
|
38 |
+
|
39 |
+
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
|
40 |
+
generated_tokens = torch.zeros((parallel_size, 576), dtype=torch.int).to(cuda_device)
|
41 |
+
|
42 |
+
pkv = None
|
43 |
+
for i in range(576):
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
|
46 |
+
pkv = outputs.past_key_values
|
47 |
+
hidden_states = outputs.last_hidden_state
|
48 |
+
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
|
49 |
+
|
50 |
+
logit_cond = logits[0::2, :]
|
51 |
+
logit_uncond = logits[1::2, :]
|
52 |
+
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
53 |
+
|
54 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
55 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
56 |
+
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
57 |
+
|
58 |
+
next_token = torch.cat([next_token.unsqueeze(dim=1)] * 2, dim=1).view(-1)
|
59 |
+
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
|
60 |
+
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
61 |
+
|
62 |
+
patches = vl_gpt.gen_vision_model.decode_code(
|
63 |
+
generated_tokens.to(dtype=torch.int),
|
64 |
+
shape=[parallel_size, 8, width // patch_size, height // patch_size]
|
65 |
+
)
|
66 |
+
return patches
|
67 |
+
|
68 |
+
def unpack(patches, width, height, parallel_size=5):
|
69 |
+
patches = patches.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
70 |
+
patches = np.clip((patches + 1) / 2 * 255, 0, 255)
|
71 |
+
|
72 |
+
images = [Image.fromarray(patches[i].astype(np.uint8)) for i in range(parallel_size)]
|
73 |
+
return images
|
74 |
+
|
75 |
+
@torch.inference_mode()
|
76 |
+
@spaces.GPU(duration=120)
|
77 |
+
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0):
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
|
80 |
+
if seed is not None:
|
81 |
+
torch.manual_seed(seed)
|
82 |
+
torch.cuda.manual_seed(seed)
|
83 |
+
np.random.seed(seed)
|
84 |
+
|
85 |
+
width, height, parallel_size = 384, 384, 5
|
86 |
+
|
87 |
+
messages = [
|
88 |
+
{'role': '<|User|>', 'content': prompt},
|
89 |
+
{'role': '<|Assistant|>', 'content': ''}
|
90 |
+
]
|
91 |
+
|
92 |
+
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
93 |
+
conversations=messages, sft_format=vl_chat_processor.sft_format, system_prompt=''
|
94 |
+
)
|
95 |
+
text += vl_chat_processor.image_start_tag
|
96 |
+
|
97 |
+
input_ids = torch.LongTensor(tokenizer.encode(text))
|
98 |
+
patches = generate(input_ids, width, height, cfg_weight=guidance, temperature=t2i_temperature, parallel_size=parallel_size)
|
99 |
+
|
100 |
+
return unpack(patches, width, height, parallel_size)
|
101 |
+
|
102 |
+
# Gradio interface
|
103 |
+
def create_interface():
|
104 |
+
with gr.Blocks() as demo:
|
105 |
+
gr.Markdown("# Text-to-Image Generation")
|
106 |
+
|
107 |
+
prompt_input = gr.Textbox(label="Prompt (describe the image)")
|
108 |
+
seed_input = gr.Number(label="Seed (Optional)", value=12345, precision=0)
|
109 |
+
guidance_slider = gr.Slider(label="CFG Guidance Weight", minimum=1, maximum=10, value=5, step=0.5)
|
110 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0, maximum=1, value=1.0, step=0.05)
|
111 |
+
|
112 |
+
generate_button = gr.Button("Generate Images")
|
113 |
+
output_gallery = gr.Gallery(label="Generated Images", columns=2, height=300)
|
114 |
+
|
115 |
+
generate_button.click(
|
116 |
+
generate_image,
|
117 |
+
inputs=[prompt_input, seed_input, guidance_slider, temperature_slider],
|
118 |
+
outputs=output_gallery
|
119 |
+
)
|
120 |
+
|
121 |
+
return demo
|
122 |
+
|
123 |
+
demo = create_interface()
|
124 |
+
demo.launch(share=True)
|