Spaces:
Runtime error
Runtime error
File size: 6,248 Bytes
977912d 10e3c4c 977912d 10e3c4c 977912d 26c4803 977912d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,Wav2Vec2ProcessorWithLM
import gradio as gr
import sox
import subprocess
def read_file_and_process(wav_file, processor):
filename = wav_file.split('.')[0]
filename_16k = filename + "16k.wav"
resampler(wav_file, filename_16k)
speech, _ = sf.read(filename_16k)
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
return inputs
def resampler(input_file_path, output_file_path):
command = (
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
f"{output_file_path}"
)
subprocess.call(command, shell=True)
def parse_transcription(logits,processor):
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
return transcription
def parse(wav_file, language):
if language == 'Hindi':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
elif language == 'Odia':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-odia-orm-100")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-odia-orm-100")
elif language == 'Assamese':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-assamese-asm-8")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-assamese-asm-8")
elif language == 'Sanskrit':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-sanskrit-sam-60")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-sanskrit-sam-60")
elif language == 'Punjabi':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10")
elif language == 'Urdu':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-urdu-urm-60")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-urdu-urm-60")
elif language == 'Rajasthani':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-rajasthani-raj-45")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-rajasthani-raj-45")
elif language == 'Marathi':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-marathi-mrm-100")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-marathi-mrm-100")
elif language == 'Malayalam':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8")
elif language == 'Maithili':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-maithili-maim-50")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-maithili-maim-50")
elif language == 'Dogri':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-dogri-doi-55")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-dogri-doi-55")
elif language == 'Bhojpuri':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-bhojpuri-bhom-60")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-bhojpuri-bhom-60")
elif language == 'Tamil':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
elif language == 'Telugu':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-telugu-tem-100")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-telugu-tem-100")
elif language == 'Nepali':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-nepali-nem-130")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-nepali-nem-130")
elif language == 'Kannada':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-kannada-knm-560")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-kannada-knm-560")
elif language == 'Gujarati':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100")
elif language == 'Bengali':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200")
elif language == 'English':
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-indian-english-enm-700")
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-indian-english-enm-700")
input_values = read_file_and_process(wav_file, processor)
with torch.no_grad():
logits = model(**input_values).logits
return parse_transcription(logits, processor)
options = ['Hindi','Odia','Assamese','Sanskrit','Punjabi','Urdu','Rajasthani','Marathi','Malayalam','Maithili','Dogri','Bhojpuri','Tamil','Telugu','Nepali','Kannada','Gujarati','Bengali','English']
language = gr.Dropdown(options,label="Select language")
input_ = gr.Audio(source="upload", type="filepath")
txtbox = gr.Textbox(
label="Output from model will appear here:",
lines=5
)
gr.Interface(parse, inputs = [input_,language ], outputs=txtbox,
streaming=True, interactive=True,
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False); |