Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import torch | |
def load_model(): | |
model_name = "TheBloke/Llama-2-13B-chat-GGUF" # Zmiana na publicznie dostępny model | |
# Konfiguracja kwantyzacji 4-bitowej | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
quantization_config=quantization_config, | |
trust_remote_code=True | |
) | |
return model, tokenizer | |
def generate_response(prompt, max_length=100): | |
try: | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_length, | |
temperature=0.7, | |
top_p=0.9, | |
repetition_penalty=1.2, | |
do_sample=True | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
return f"Error: {str(e)}" | |
print("Ładowanie modelu...") | |
model, tokenizer = load_model() | |
print("Model załadowany!") | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Prompt", lines=5), | |
gr.Slider(minimum=1, maximum=500, value=100, label="Max Length") | |
], | |
outputs=gr.Textbox(label="Response", lines=5), | |
title="Llama 2 Chat Bot", | |
description="Bot RPG oparty na Llama 2" | |
) | |
iface.launch() |