File size: 10,689 Bytes
7ff2ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import math
from typing import Optional

import torch
from torch import nn
from torch.nn import functional as F


class MultiHeadAttention(nn.Module):
    def __init__(

        self,

        channels: int,

        out_channels: int,

        n_heads: int,

        p_dropout: float = 0.0,

        window_size: Optional[int] = None,

        heads_share: bool = True,

        block_length: Optional[int] = None,

        proximal_bias: bool = False,

        proximal_init: bool = False,

    ):
        super(MultiHeadAttention, self).__init__()
        assert channels % n_heads == 0

        self.channels = channels
        self.out_channels = out_channels
        self.n_heads = n_heads
        self.p_dropout = p_dropout
        self.window_size = window_size
        self.heads_share = heads_share
        self.block_length = block_length
        self.proximal_bias = proximal_bias
        self.proximal_init = proximal_init
        self.attn = None

        self.k_channels = channels // n_heads
        self.conv_q = nn.Conv1d(channels, channels, 1)
        self.conv_k = nn.Conv1d(channels, channels, 1)
        self.conv_v = nn.Conv1d(channels, channels, 1)
        self.conv_o = nn.Conv1d(channels, out_channels, 1)
        self.drop = nn.Dropout(p_dropout)

        if window_size is not None:
            n_heads_rel = 1 if heads_share else n_heads
            rel_stddev = self.k_channels**-0.5
            self.emb_rel_k = nn.Parameter(
                torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
                * rel_stddev
            )
            self.emb_rel_v = nn.Parameter(
                torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
                * rel_stddev
            )

        nn.init.xavier_uniform_(self.conv_q.weight)
        nn.init.xavier_uniform_(self.conv_k.weight)
        nn.init.xavier_uniform_(self.conv_v.weight)
        if proximal_init:
            with torch.no_grad():
                self.conv_k.weight.copy_(self.conv_q.weight)
                self.conv_k.bias.copy_(self.conv_q.bias)

    def __call__(

        self,

        x: torch.Tensor,

        c: torch.Tensor,

        attn_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        return super().__call__(x, c, attn_mask=attn_mask)

    def forward(

        self,

        x: torch.Tensor,

        c: torch.Tensor,

        attn_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        q = self.conv_q(x)
        k = self.conv_k(c)
        v = self.conv_v(c)

        x, _ = self._attention(q, k, v, mask=attn_mask)

        x = self.conv_o(x)
        return x

    def _attention(

        self,

        query: torch.Tensor,

        key: torch.Tensor,

        value: torch.Tensor,

        mask: Optional[torch.Tensor] = None,

    ):
        # reshape [b, d, t] -> [b, n_h, t, d_k]
        b, d, t_s = key.size()
        t_t = query.size(2)
        query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
        key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
        value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)

        scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
        if self.window_size is not None:
            assert (
                t_s == t_t
            ), "Relative attention is only available for self-attention."
            key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
            rel_logits = self._matmul_with_relative_keys(
                query / math.sqrt(self.k_channels), key_relative_embeddings
            )
            scores_local = self._relative_position_to_absolute_position(rel_logits)
            scores = scores + scores_local
        if self.proximal_bias:
            assert t_s == t_t, "Proximal bias is only available for self-attention."
            scores = scores + self._attention_bias_proximal(t_s).to(
                device=scores.device, dtype=scores.dtype
            )
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e4)
            if self.block_length is not None:
                assert (
                    t_s == t_t
                ), "Local attention is only available for self-attention."
                block_mask = (
                    torch.ones_like(scores)
                    .triu(-self.block_length)
                    .tril(self.block_length)
                )
                scores = scores.masked_fill(block_mask == 0, -1e4)
        p_attn = F.softmax(scores, dim=-1)  # [b, n_h, t_t, t_s]
        p_attn = self.drop(p_attn)
        output = torch.matmul(p_attn, value)
        if self.window_size is not None:
            relative_weights = self._absolute_position_to_relative_position(p_attn)
            value_relative_embeddings = self._get_relative_embeddings(
                self.emb_rel_v, t_s
            )
            output = output + self._matmul_with_relative_values(
                relative_weights, value_relative_embeddings
            )
        output = (
            output.transpose(2, 3).contiguous().view(b, d, t_t)
        )  # [b, n_h, t_t, d_k] -> [b, d, t_t]
        return output, p_attn

    def _matmul_with_relative_values(self, x, y):
        """

        x: [b, h, l, m]

        y: [h or 1, m, d]

        ret: [b, h, l, d]

        """
        ret = torch.matmul(x, y.unsqueeze(0))
        return ret

    def _matmul_with_relative_keys(self, x, y):
        """

        x: [b, h, l, d]

        y: [h or 1, m, d]

        ret: [b, h, l, m]

        """
        ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
        return ret

    def _get_relative_embeddings(self, relative_embeddings, length: int):
        # max_relative_position = 2 * self.window_size + 1
        # Pad first before slice to avoid using cond ops.
        pad_length: int = max(length - (self.window_size + 1), 0)
        slice_start_position = max((self.window_size + 1) - length, 0)
        slice_end_position = slice_start_position + 2 * length - 1
        if pad_length > 0:
            padded_relative_embeddings = F.pad(
                relative_embeddings,
                [0, 0, pad_length, pad_length, 0, 0],
            )
        else:
            padded_relative_embeddings = relative_embeddings
        used_relative_embeddings = padded_relative_embeddings[
            :, slice_start_position:slice_end_position
        ]
        return used_relative_embeddings

    def _relative_position_to_absolute_position(self, x):
        """

        x: [b, h, l, 2*l-1]

        ret: [b, h, l, l]

        """
        batch, heads, length, _ = x.size()
        # Concat columns of pad to shift from relative to absolute indexing.
        x = F.pad(
            x,
            [0, 1, 0, 0, 0, 0, 0, 0],
        )

        # Concat extra elements so to add up to shape (len+1, 2*len-1).
        x_flat = x.view([batch, heads, length * 2 * length])
        x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])

        # Reshape and slice out the padded elements.
        x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
            :, :, :length, length - 1 :
        ]
        return x_final

    def _absolute_position_to_relative_position(self, x):
        """

        x: [b, h, l, l]

        ret: [b, h, l, 2*l-1]

        """
        batch, heads, length, _ = x.size()
        # padd along column
        x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
        x_flat = x.view([batch, heads, (length**2) + (length * (length - 1))])
        # add 0's in the beginning that will skew the elements after reshape
        x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
        x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
        return x_final

    def _attention_bias_proximal(self, length: int):
        """Bias for self-attention to encourage attention to close positions.

        Args:

          length: an integer scalar.

        Returns:

          a Tensor with shape [1, 1, length, length]

        """
        r = torch.arange(length, dtype=torch.float32)
        diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
        return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)


class FFN(nn.Module):
    """

    Feed-Forward Network

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        filter_channels: int,

        kernel_size: int,

        p_dropout: float = 0.0,

        activation: Optional[str] = None,

        causal: bool = False,

    ):
        super(FFN, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.activation = activation
        self.causal = causal
        self.is_activation = True if activation == "gelu" else False

        self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
        self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
        self.drop = nn.Dropout(p_dropout)

    def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
        return super().__call__(x, x_mask)

    def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
        x = self.conv_1(self._padding(x, x_mask))
        if self.is_activation:
            x = x * torch.sigmoid(1.702 * x)
        else:
            x = torch.relu(x)
        x = self.drop(x)

        x = self.conv_2(self._padding(x, x_mask))
        return x * x_mask

    def _padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
        if self.causal:
            return self._causal_padding(x * x_mask)
        return self._same_padding(x * x_mask)

    def _causal_padding(self, x):
        if self.kernel_size == 1:
            return x
        pad_l: int = self.kernel_size - 1
        pad_r: int = 0
        # padding = [[0, 0], [0, 0], [pad_l, pad_r]]
        x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
        return x

    def _same_padding(self, x):
        if self.kernel_size == 1:
            return x
        pad_l: int = (self.kernel_size - 1) // 2
        pad_r: int = self.kernel_size // 2
        # padding = [[0, 0], [0, 0], [pad_l, pad_r]]
        x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
        return x