File size: 8,177 Bytes
7ff2ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import Optional, List
import math

import torch
from torch import nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, weight_norm

from .generators import SineGenerator
from .residuals import ResBlock1, ResBlock2, LRELU_SLOPE
from .utils import call_weight_data_normal_if_Conv


class SourceModuleHnNSF(torch.nn.Module):
    """SourceModule for hn-nsf
    SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
                 add_noise_std=0.003, voiced_threshod=0)
    sampling_rate: sampling_rate in Hz
    harmonic_num: number of harmonic above F0 (default: 0)
    sine_amp: amplitude of sine source signal (default: 0.1)
    add_noise_std: std of additive Gaussian noise (default: 0.003)
        note that amplitude of noise in unvoiced is decided
        by sine_amp
    voiced_threshold: threhold to set U/V given F0 (default: 0)
    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
    F0_sampled (batchsize, length, 1)
    Sine_source (batchsize, length, 1)
    noise_source (batchsize, length 1)
    uv (batchsize, length, 1)
    """

    def __init__(
        self,
        sampling_rate: int,
        harmonic_num: int = 0,
        sine_amp: float = 0.1,
        add_noise_std: float = 0.003,
        voiced_threshod: int = 0,
    ):
        super(SourceModuleHnNSF, self).__init__()

        self.sine_amp = sine_amp
        self.noise_std = add_noise_std
        # to produce sine waveforms
        self.l_sin_gen = SineGenerator(
            sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
        )
        # to merge source harmonics into a single excitation
        self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = torch.nn.Tanh()

    def __call__(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor:
        return super().__call__(x, upp=upp)

    def forward(self, x: torch.Tensor, upp: int = 1) -> torch.Tensor:
        sine_wavs, _, _ = self.l_sin_gen(x, upp)
        sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
        sine_merge: torch.Tensor = self.l_tanh(self.l_linear(sine_wavs))
        return sine_merge  # , None, None  # noise, uv


class NSFGenerator(torch.nn.Module):
    def __init__(
        self,
        initial_channel: int,
        resblock: str,
        resblock_kernel_sizes: List[int],
        resblock_dilation_sizes: List[List[int]],
        upsample_rates: List[int],
        upsample_initial_channel: int,
        upsample_kernel_sizes: List[int],
        gin_channels: int,
        sr: int,
    ):
        super(NSFGenerator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)

        self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates))
        self.m_source = SourceModuleHnNSF(sampling_rate=sr, harmonic_num=0)
        self.noise_convs = nn.ModuleList()
        self.conv_pre = Conv1d(
            initial_channel, upsample_initial_channel, 7, 1, padding=3
        )
        resblock = ResBlock1 if resblock == "1" else ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            c_cur = upsample_initial_channel // (2 ** (i + 1))
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
            if i + 1 < len(upsample_rates):
                stride_f0 = math.prod(upsample_rates[i + 1 :])
                self.noise_convs.append(
                    Conv1d(
                        1,
                        c_cur,
                        kernel_size=stride_f0 * 2,
                        stride=stride_f0,
                        padding=stride_f0 // 2,
                    )
                )
            else:
                self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch: int = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(call_weight_data_normal_if_Conv)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

        self.upp = math.prod(upsample_rates)

        self.lrelu_slope = LRELU_SLOPE

    def __call__(
        self,
        x: torch.Tensor,
        f0: torch.Tensor,
        g: Optional[torch.Tensor] = None,
        n_res: Optional[int] = None,
    ) -> torch.Tensor:
        return super().__call__(x, f0, g=g, n_res=n_res)

    def forward(
        self,
        x: torch.Tensor,
        f0: torch.Tensor,
        g: Optional[torch.Tensor] = None,
        n_res: Optional[int] = None,
    ) -> torch.Tensor:
        har_source = self.m_source(f0, self.upp)
        har_source = har_source.transpose(1, 2)

        if n_res is not None:
            n_res = int(n_res)
            if n_res * self.upp != har_source.shape[-1]:
                har_source = F.interpolate(
                    har_source, size=n_res * self.upp, mode="linear"
                )
            if n_res != x.shape[-1]:
                x = F.interpolate(x, size=n_res, mode="linear")

        x = self.conv_pre(x)
        if g is not None:
            x = x + self.cond(g)
        # torch.jit.script() does not support direct indexing of torch modules
        # That's why I wrote this
        for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)):
            if i < self.num_upsamples:
                x = F.leaky_relu(x, self.lrelu_slope)
                x = ups(x)
                x_source = noise_convs(har_source)
                x = x + x_source
                xs: Optional[torch.Tensor] = None
                l = [i * self.num_kernels + j for j in range(self.num_kernels)]
                for j, resblock in enumerate(self.resblocks):
                    if j in l:
                        if xs is None:
                            xs = resblock(x)
                        else:
                            xs += resblock(x)
                # This assertion cannot be ignored! \
                # If ignored, it will cause torch.jit.script() compilation errors
                assert isinstance(xs, torch.Tensor)
                x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()

    def __prepare_scriptable__(self):
        for l in self.ups:
            for hook in l._forward_pre_hooks.values():
                # The hook we want to remove is an instance of WeightNorm class, so
                # normally we would do `if isinstance(...)` but this class is not accessible
                # because of shadowing, so we check the module name directly.
                # https://github.com/pytorch/pytorch/blob/be0ca00c5ce260eb5bcec3237357f7a30cc08983/torch/nn/utils/__init__.py#L3
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        for l in self.resblocks:
            for hook in self.resblocks._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        return self