rvc-ui / rvc /layers /discriminators.py
Blane187's picture
Upload folder using huggingface_hub
7ff2ba3 verified
from typing import List, Tuple
import torch
from torch import nn
from torch.nn import Conv1d, Conv2d
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm
from .residuals import LRELU_SLOPE
from .utils import get_padding
class MultiPeriodDiscriminator(torch.nn.Module):
"""
version: 'v1' or 'v2'
"""
def __init__(
self, version: str, use_spectral_norm: bool = False, has_xpu: bool = False
):
super(MultiPeriodDiscriminator, self).__init__()
periods = (
(2, 3, 5, 7, 11, 17) if version == "v1" else (2, 3, 5, 7, 11, 17, 23, 37)
)
self.discriminators = nn.ModuleList(
[
DiscriminatorS(use_spectral_norm=use_spectral_norm),
*(
DiscriminatorP(
i, use_spectral_norm=use_spectral_norm, has_xpu=has_xpu
)
for i in periods
),
]
)
def __call__(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
return super().__call__(y, y_hat)
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[List[torch.Tensor]],
List[List[torch.Tensor]],
]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm: bool = False):
super(DiscriminatorS, self).__init__()
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
return super().__call__(x)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorP(torch.nn.Module):
def __init__(
self,
period: int,
kernel_size: int = 5,
stride: int = 3,
use_spectral_norm: bool = False,
has_xpu: bool = False,
):
super(DiscriminatorP, self).__init__()
self.period = period
self.has_xpu = has_xpu
norm_f = spectral_norm if use_spectral_norm else weight_norm
sequence = (1, 32, 128, 512, 1024)
convs_padding = (get_padding(kernel_size, 1), 0)
self.convs = nn.ModuleList()
for i in range(len(sequence) - 1):
self.convs.append(
norm_f(
Conv2d(
sequence[i],
sequence[i + 1],
(kernel_size, 1),
(stride, 1),
padding=convs_padding,
)
)
)
self.convs.append(
norm_f(
Conv2d(
1024,
1024,
(kernel_size, 1),
1,
padding=convs_padding,
)
)
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
return super().__call__(x)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
if self.has_xpu and x.dtype == torch.bfloat16:
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
dtype=torch.bfloat16
)
else:
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap