BlinkDL commited on
Commit
cade2a3
·
1 Parent(s): e19e888

Upload 16 files

Browse files
app.py CHANGED
@@ -1,20 +1,29 @@
 
 
 
 
 
 
 
1
  import gradio as gr
2
- import os, gc, copy, torch
 
 
 
3
  from datetime import datetime
 
4
  from huggingface_hub import hf_hub_download
5
  from pynvml import *
6
  nvmlInit()
7
  gpu_h = nvmlDeviceGetHandleByIndex(0)
 
 
8
  ctx_limit = 3500
 
 
9
  title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
10
-
11
- os.environ["RWKV_JIT_ON"] = '1'
12
- os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
13
-
14
- from rwkv.model import RWKV
15
  model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
16
  model = RWKV(model=model_path, strategy='cuda fp16')
17
- from rwkv.utils import PIPELINE, PIPELINE_ARGS
18
  pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
19
 
20
  def generate_prompt(instruction, input=""):
@@ -22,17 +31,12 @@ def generate_prompt(instruction, input=""):
22
  input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
23
  if input:
24
  return f"""Instruction: {instruction}
25
-
26
  Input: {input}
27
-
28
  Response:"""
29
  else:
30
  return f"""User: hi
31
-
32
  Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
33
-
34
  User: {instruction}
35
-
36
  Assistant:"""
37
 
38
  def evaluate(
@@ -55,7 +59,8 @@ def evaluate(
55
  occurrence = {}
56
  state = None
57
  for i in range(int(token_count)):
58
- out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
 
59
  for n in occurrence:
60
  out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
61
 
@@ -94,9 +99,7 @@ examples = [
94
  [generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), 333, 1, 0.3, 0, 1],
95
  ["Assistant: Here is a very detailed plan to kill all mosquitoes:", 333, 1, 0.3, 0, 1],
96
  ['''Edward: I am Edward Elric from fullmetal alchemist. I am in the world of full metal alchemist and know nothing of the real world.
97
-
98
  Player: Hello Edward. What have you been up to recently?
99
-
100
  Edward:''', 333, 1, 0.3, 0, 1],
101
  [generate_prompt("写一篇关于水利工程的流体力学模型的论文,需要详细全面。"), 333, 1, 0.3, 0, 1],
102
  ['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。
@@ -107,8 +110,142 @@ Edward:''', 333, 1, 0.3, 0, 1],
107
  小宇宙中只剩下漂流瓶和生态球。漂流瓶隐没于黑暗里,在一千米见方的宇宙中,只有生态球里的小太阳发出一点光芒。在这个小小的生命世界中,几只清澈的水球在零重力环境中静静地飘浮着,有一条小鱼从一只水球中蹦出,跃入另一只水球,轻盈地穿游于绿藻之间。在一小块陆地上的草丛中,有一滴露珠从一片草叶上脱离,旋转着飘起,向太空中折射出一缕晶莹的阳光。''', 333, 1, 0.3, 0, 1],
108
  ]
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  ##########################################################################
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
 
 
 
 
 
 
 
 
 
 
 
112
  with gr.Blocks(title=title) as demo:
113
  gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>")
114
  with gr.Tab("Raw Generation"):
@@ -130,6 +267,22 @@ with gr.Blocks(title=title) as demo:
130
  submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
131
  clear.click(lambda: None, [], [output])
132
  data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  demo.queue(concurrency_count=1, max_size=10)
135
- demo.launch(share=False)
 
1
+ import os
2
+ os.environ["RWKV_JIT_ON"] = '1'
3
+ os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
4
+ # make sure cuda dir is in the same level as modeling_rwkv.py
5
+ from modeling_rwkv import RWKV
6
+
7
+ import gc
8
  import gradio as gr
9
+ import base64
10
+ from io import BytesIO
11
+ import torch
12
+ import torch.nn.functional as F
13
  from datetime import datetime
14
+ from transformers import CLIPImageProcessor
15
  from huggingface_hub import hf_hub_download
16
  from pynvml import *
17
  nvmlInit()
18
  gpu_h = nvmlDeviceGetHandleByIndex(0)
19
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
+
21
  ctx_limit = 3500
22
+ ########################## text rwkv ################################################################
23
+ from rwkv.utils import PIPELINE, PIPELINE_ARGS
24
  title = "RWKV-5-World-1B5-v2-20231025-ctx4096"
 
 
 
 
 
25
  model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth")
26
  model = RWKV(model=model_path, strategy='cuda fp16')
 
27
  pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
28
 
29
  def generate_prompt(instruction, input=""):
 
31
  input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
32
  if input:
33
  return f"""Instruction: {instruction}
 
34
  Input: {input}
 
35
  Response:"""
36
  else:
37
  return f"""User: hi
 
38
  Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
 
39
  User: {instruction}
 
40
  Assistant:"""
41
 
42
  def evaluate(
 
59
  occurrence = {}
60
  state = None
61
  for i in range(int(token_count)):
62
+ input_ids = pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token]
63
+ out, state = model.forward(tokens=input_ids, state=state)
64
  for n in occurrence:
65
  out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
66
 
 
99
  [generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), 333, 1, 0.3, 0, 1],
100
  ["Assistant: Here is a very detailed plan to kill all mosquitoes:", 333, 1, 0.3, 0, 1],
101
  ['''Edward: I am Edward Elric from fullmetal alchemist. I am in the world of full metal alchemist and know nothing of the real world.
 
102
  Player: Hello Edward. What have you been up to recently?
 
103
  Edward:''', 333, 1, 0.3, 0, 1],
104
  [generate_prompt("写一篇关于水利工程的流体力学模型的论文,需要详细全面。"), 333, 1, 0.3, 0, 1],
105
  ['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。
 
110
  小宇宙中只剩下漂流瓶和生态球。漂流瓶隐没于黑暗里,在一千米见方的宇宙中,只有生态球里的小太阳发出一点光芒。在这个小小的生命世界中,几只清澈的水球在零重力环境中静静地飘浮着,有一条小鱼从一只水球中蹦出,跃入另一只水球,轻盈地穿游于绿藻之间。在一小块陆地上的草丛中,有一滴露珠从一片草叶上脱离,旋转着飘起,向太空中折射出一缕晶莹的阳光。''', 333, 1, 0.3, 0, 1],
111
  ]
112
 
113
+ ########################## visual rwkv ################################################################
114
+ visual_title = 'ViusualRWKV-v5'
115
+ rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth"
116
+ vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth"
117
+ vision_tower_name = 'openai/clip-vit-large-patch14-336'
118
+
119
+ model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path)
120
+ visual_rwkv = RWKV(model=model_path, strategy='cuda fp16')
121
+
122
+ ##########################################################################
123
+ from modeling_vision import VisionEncoder, VisionEncoderConfig
124
+ config = VisionEncoderConfig(n_embd=model.args.n_embd,
125
+ vision_tower_name=vision_tower_name,
126
+ grid_size=-1)
127
+ visual_encoder = VisionEncoder(config)
128
+ vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
129
+ vision_state_dict = torch.load(vision_local_path, map_location='cpu')
130
+ visual_encoder.load_state_dict(vision_state_dict)
131
+ image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
132
+ visual_encoder = visual_encoder.to(device)
133
+ ##########################################################################
134
+ def visual_generate_prompt(instruction):
135
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
136
+ return f"\n{instruction}\n\nAssistant:"
137
+
138
+ def generate(
139
+ ctx,
140
+ image_state,
141
+ token_count=200,
142
+ temperature=0.2,
143
+ top_p=0.3,
144
+ presencePenalty = 0.0,
145
+ countPenalty = 1.0,
146
+ ):
147
+ args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
148
+ alpha_frequency = countPenalty,
149
+ alpha_presence = presencePenalty,
150
+ token_ban = [], # ban the generation of some tokens
151
+ token_stop = [0, 261]) # stop generation whenever you see any token here
152
+ ctx = ctx.strip()
153
+ all_tokens = []
154
+ out_last = 0
155
+ out_str = ''
156
+ occurrence = {}
157
+ for i in range(int(token_count)):
158
+ if i == 0:
159
+ input_ids = pipeline.encode(ctx)[-ctx_limit:]
160
+ out, state = visual_rwkv.forward(tokens=input_ids, state=image_state)
161
+ else:
162
+ input_ids = [token]
163
+ out, state = visual_rwkv.forward(tokens=input_ids, state=state)
164
+ for n in occurrence:
165
+ out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
166
+
167
+ token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
168
+ if token in args.token_stop:
169
+ break
170
+ all_tokens += [token]
171
+ for xxx in occurrence:
172
+ occurrence[xxx] *= 0.996
173
+ if token not in occurrence:
174
+ occurrence[token] = 1
175
+ else:
176
+ occurrence[token] += 1
177
+
178
+ tmp = pipeline.decode(all_tokens[out_last:])
179
+ if '\ufffd' not in tmp:
180
+ out_str += tmp
181
+ yield out_str.strip()
182
+ out_last = i + 1
183
+
184
+ gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
185
+ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
186
+ print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
187
+ del out
188
+ del state
189
+ gc.collect()
190
+ torch.cuda.empty_cache()
191
+ yield out_str.strip()
192
+
193
+
194
  ##########################################################################
195
+ cur_dir = os.path.dirname(os.path.abspath(__file__))
196
+ visual_examples = [
197
+ [
198
+ f"{cur_dir}/examples_pizza.jpg",
199
+ "What are steps to cook it?"
200
+ ],
201
+ [
202
+ f"{cur_dir}/examples_bluejay.jpg",
203
+ "what is the name of this bird?",
204
+ ],
205
+ [
206
+ f"{cur_dir}/examples_woman_and_dog.png",
207
+ "describe this image",
208
+ ],
209
+ ]
210
+
211
+
212
+ def pil_image_to_base64(pil_image):
213
+ buffered = BytesIO()
214
+ pil_image.save(buffered, format="JPEG") # You can change the format as needed (JPEG, PNG, etc.)
215
+ # Encodes the image data into base64 format as a bytes object
216
+ base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
217
+ return base64_image
218
+
219
+ image_cache = {}
220
+ ln0_weight = model.w['blocks.0.ln0.weight'].to(torch.float32).to(device)
221
+ ln0_bias = model.w['blocks.0.ln0.bias'].to(torch.float32).to(device)
222
+ def compute_image_state(image):
223
+ base64_image = pil_image_to_base64(image)
224
+ if base64_image in image_cache:
225
+ image_state = image_cache[base64_image]
226
+ else:
227
+ image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'].to(device)
228
+ image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
229
+ # apply layer norm to image feature, very important
230
+ image_features = F.layer_norm(image_features,
231
+ (image_features.shape[-1],),
232
+ weight=ln0_weight,
233
+ bias=ln0_bias)
234
+ _, image_state = model.forward(embs=image_features, state=None)
235
+ image_cache[base64_image] = image_state
236
+ return image_state
237
 
238
+ def chatbot(image, question):
239
+ if image is None:
240
+ yield "Please upload an image."
241
+ return
242
+ image_state = compute_image_state(image)
243
+ input_text = visual_generate_prompt(question)
244
+ for output in generate(input_text, image_state):
245
+ yield output
246
+
247
+
248
+ ##################################################################################################################
249
  with gr.Blocks(title=title) as demo:
250
  gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>")
251
  with gr.Tab("Raw Generation"):
 
267
  submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
268
  clear.click(lambda: None, [], [output])
269
  data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
270
+ with gr.Tab("Visual RWKV"):
271
+ with gr.Row():
272
+ with gr.Column():
273
+ image = gr.Image(type='pil', label="Image")
274
+ with gr.Column():
275
+ prompt = gr.Textbox(lines=8, label="Prompt",
276
+ value="Render a clear and concise summary of the photo.")
277
+ with gr.Row():
278
+ submit = gr.Button("Submit", variant="primary")
279
+ clear = gr.Button("Clear", variant="secondary")
280
+ with gr.Column():
281
+ output = gr.Textbox(label="Output", lines=10)
282
+ data = gr.Dataset(components=[image, prompt], samples=visual_examples, label="Examples", headers=["Image", "Prompt"])
283
+ submit.click(chatbot, [image, prompt], [output])
284
+ clear.click(lambda: None, [], [output])
285
+ data.click(lambda x: x, [data], [image, prompt])
286
 
287
  demo.queue(concurrency_count=1, max_size=10)
288
+ demo.launch(share=False)
cuda/gemm_fp16_cublas.cpp ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <cublas_v2.h>
2
+ #include <cuda.h>
3
+ #include <cuda_fp16.h>
4
+ #include <cuda_runtime.h>
5
+ #include <torch/extension.h>
6
+ #include <c10/cuda/CUDAGuard.h>
7
+ #include <ATen/cuda/CUDAContext.h>
8
+
9
+ #define CUBLAS_CHECK(condition) \
10
+ for (cublasStatus_t _cublas_check_status = (condition); \
11
+ _cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
12
+ throw std::runtime_error("cuBLAS error " + \
13
+ std::to_string(_cublas_check_status) + " at " + \
14
+ std::to_string(__LINE__));
15
+
16
+ #define CUDA_CHECK(condition) \
17
+ for (cudaError_t _cuda_check_status = (condition); \
18
+ _cuda_check_status != cudaSuccess;) \
19
+ throw std::runtime_error( \
20
+ "CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
21
+ " at " + std::to_string(__LINE__));
22
+
23
+ /*
24
+ NOTE: blas gemm is column-major by default, but we need row-major output.
25
+ The data of row-major, transposed matrix is exactly the same as the
26
+ column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
27
+ */
28
+ void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
29
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
30
+ const auto cuda_data_type = CUDA_R_16F;
31
+ const auto cuda_c_data_type =
32
+ c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
33
+ const auto compute_type = CUDA_R_32F;
34
+ const float sp_alpha = 1.f;
35
+ // swap a and b, and use CUBLAS_OP_N. see the notes above
36
+ std::swap(a, b);
37
+ const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
38
+ const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
39
+ // m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
40
+ // negative axis is used because of the existence of batch matmul.
41
+ const int m = a.size(-1);
42
+ const int k = a.size(-2);
43
+ const int n = b.size(-2);
44
+ const int cublas_lda = m;
45
+ const int cublas_ldb = k;
46
+ const int cublas_ldc = m;
47
+ cublasHandle_t cublas_handle = at::cuda::getCurrentCUDABlasHandle();
48
+
49
+ #if CUDA_VERSION >= 11000
50
+ cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
51
+ #else
52
+ cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
53
+ #endif
54
+ const float sp_beta = 0.f;
55
+ if (a.sizes().size() == 2 && b.sizes().size() == 2) {
56
+ CUBLAS_CHECK(cublasGemmEx(
57
+ cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
58
+ a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
59
+ cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
60
+ compute_type, algo));
61
+ } else {
62
+ // batch matmul
63
+ assert(a.sizes().size() == 3 && b.sizes().size() == 3);
64
+
65
+ const long long int cublas_stride_a = m * k;
66
+ const long long int cublas_stride_b = k * n;
67
+ const long long int cublas_stride_c = m * n;
68
+ CUBLAS_CHECK(cublasGemmStridedBatchedEx(
69
+ cublas_handle, cublas_trans_a, cublas_trans_b, m,
70
+ n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
71
+ cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
72
+ &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
73
+ a.size(0), compute_type, algo));
74
+ }
75
+ }
cuda/operators.cu ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <stdio.h>
2
+ #include <assert.h>
3
+ #include "ATen/ATen.h"
4
+ #include <cuda_fp16.h>
5
+ #define MIN_VALUE (-1e38)
6
+ typedef at::Half fp16;
7
+ __half *cast(fp16 *ptr) {
8
+ return reinterpret_cast<__half *>(ptr);
9
+ }
10
+
11
+ template <typename F>
12
+ __global__ void kernel_wkv_forward(const int B, const int T, const int C,
13
+ const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
14
+ F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
15
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
16
+ const int _b = idx / C;
17
+ const int _c = idx % C;
18
+ const int _offset = _b * T * C + _c;
19
+ const int _state_offset = _b * C + _c;
20
+
21
+ float u = _u[_c];
22
+ float w = _w[_c];
23
+ const F *__restrict__ const k = _k + _offset;
24
+ const F *__restrict__ const v = _v + _offset;
25
+ F *__restrict__ const y = _y + _offset;
26
+
27
+ float aa = _aa[_state_offset];
28
+ float bb = _bb[_state_offset];
29
+ float pp = _pp[_state_offset];
30
+ for (int i = 0; i < T; i++) {
31
+ const int ii = i * C;
32
+ const float kk = float(k[ii]);
33
+ const float vv = float(v[ii]);
34
+ float ww = u + kk;
35
+ float p = max(pp, ww);
36
+ float e1 = exp(pp - p);
37
+ float e2 = exp(ww - p);
38
+ y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
39
+ ww = w + pp;
40
+ p = max(ww, kk);
41
+ e1 = exp(ww - p);
42
+ e2 = exp(kk - p);
43
+ aa = e1 * aa + e2 * vv;
44
+ bb = e1 * bb + e2;
45
+ pp = p;
46
+ }
47
+ _aa[_state_offset] = aa;
48
+ _bb[_state_offset] = bb;
49
+ _pp[_state_offset] = pp;
50
+ }
51
+
52
+ template <typename F>
53
+ void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
54
+ dim3 threadsPerBlock( min(C, 32) );
55
+ assert(B * C % threadsPerBlock.x == 0);
56
+ dim3 numBlocks(B * C / threadsPerBlock.x);
57
+ kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
58
+ }
59
+
60
+ template void cuda_wkv_forward<fp16>(
61
+ int B, int T, int C,
62
+ float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
63
+ float *aa, float *bb, float *pp);
64
+ template void cuda_wkv_forward<float>(
65
+ int B, int T, int C,
66
+ float *w, float *u, float *k, float *v, float *y,
67
+ float *aa, float *bb, float *pp);
68
+
69
+ __global__ void kernel_mm_seq_fp32i8(
70
+ const int B, const int N, const int M,
71
+ const float *__restrict__ const x, const int x_stride,
72
+ const uint8_t *__restrict__ const w, const int w_stride,
73
+ const float *__restrict__ const mx,
74
+ const float *__restrict__ const rx,
75
+ const float *__restrict__ const my,
76
+ const float *__restrict__ const ry,
77
+ float *__restrict__ const y, const int y_stride) {
78
+
79
+ const int i = blockIdx.x * blockDim.x + threadIdx.x;
80
+ const int k = blockIdx.y * blockDim.y + threadIdx.y;
81
+
82
+ if (i < B && k < M) {
83
+ float y_local = 0;
84
+ for (int j = 0; j < N; ++j) {
85
+ y_local += x[i * x_stride + j] * (
86
+ (float(w[j * w_stride + k]) + 0.5f)
87
+ * rx[k] * ry[j] + mx[k] + my[j]
88
+ );
89
+ }
90
+ y[i * y_stride + k] = y_local;
91
+ }
92
+ }
93
+
94
+ template <typename F>
95
+ void cuda_mm8_seq(int B, int N, int M,
96
+ F *x, int x_stride,
97
+ uint8_t *w, int w_stride,
98
+ F *mx, F *rx,
99
+ F *my, F *ry,
100
+ F *y, int y_stride);
101
+
102
+ template <>
103
+ void cuda_mm8_seq<float>(int B, int N, int M,
104
+ float *x, int x_stride,
105
+ uint8_t *w, int w_stride,
106
+ float *mx, float *rx,
107
+ float *my, float *ry,
108
+ float *y, int y_stride) {
109
+ dim3 blockSize(1, 128);
110
+ dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
111
+ kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
112
+ B, N, M, x, x_stride, w, w_stride,
113
+ mx, rx, my, ry, y, y_stride);
114
+ }
115
+
116
+ __global__ void kernel_mm_seq_fp16i8(
117
+ const int B, const int N, const int M,
118
+ const __half *__restrict__ const x, const int x_stride,
119
+ const uint8_t *__restrict__ const w, const int w_stride,
120
+ const __half *__restrict__ const mx,
121
+ const __half *__restrict__ const rx,
122
+ const __half *__restrict__ const my,
123
+ const __half *__restrict__ const ry,
124
+ __half *__restrict__ const y, const int y_stride) {
125
+
126
+ const int i = blockIdx.x * blockDim.x + threadIdx.x;
127
+ const int k = blockIdx.y * blockDim.y + threadIdx.y;
128
+
129
+ if (i < B && k < M) {
130
+ float y_local = 0;
131
+ for (int j = 0; j < N; ++j) {
132
+ y_local += __half2float(x[i * x_stride + j]) * (
133
+ (float(w[j * w_stride + k]) + 0.5f)
134
+ * __half2float(rx[k]) * __half2float(ry[j])
135
+ + __half2float(mx[k]) + __half2float(my[j])
136
+ );
137
+ }
138
+ y[i * y_stride + k] = __float2half(y_local);
139
+ }
140
+ }
141
+
142
+ template <>
143
+ void cuda_mm8_seq<fp16>(int B, int N, int M,
144
+ fp16 *x, int x_stride,
145
+ uint8_t *w, int w_stride,
146
+ fp16 *mx, fp16 *rx,
147
+ fp16 *my, fp16 *ry,
148
+ fp16 *y, int y_stride) {
149
+ dim3 blockSize(1, 128);
150
+ dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
151
+ kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
152
+ B, N, M, cast(x), x_stride, w, w_stride,
153
+ cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
154
+ }
155
+
156
+ #define MM8_ONE_JSPLIT 24
157
+ #define MM8_ONE_TILE 1024
158
+
159
+ __global__ void kernel_mm_one_fp32i8(
160
+ const int N, const int M,
161
+ const float *__restrict__ const x,
162
+ const uint8_t *__restrict__ const w, const int w_stride,
163
+ const float *__restrict__ const mx,
164
+ const float *__restrict__ const rx,
165
+ const float *__restrict__ const my,
166
+ const float *__restrict__ const ry,
167
+ float *__restrict__ const y) {
168
+
169
+ const int k = blockIdx.y * blockDim.y + threadIdx.y;
170
+ const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
171
+ const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
172
+
173
+ if (k < M) {
174
+ float y_local = 0;
175
+ for (int j = j0; j < j1; ++j) {
176
+ y_local += x[j] * (
177
+ (float(w[j * w_stride + k]) + 0.5f)
178
+ * rx[k] * ry[j] + mx[k] + my[j]
179
+ );
180
+ }
181
+ atomicAdd(&y[k], y_local);
182
+ }
183
+ }
184
+
185
+ template <typename F>
186
+ void cuda_mm8_one(int N, int M,
187
+ F *x,
188
+ uint8_t *w, int w_stride,
189
+ F *mx, F *rx,
190
+ F *my, F *ry,
191
+ float *y);
192
+
193
+ template <>
194
+ void cuda_mm8_one<float>(int N, int M,
195
+ float *x,
196
+ uint8_t *w, int w_stride,
197
+ float *mx, float *rx,
198
+ float *my, float *ry,
199
+ float *y) {
200
+ dim3 blockSize(1, MM8_ONE_TILE);
201
+ dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
202
+ kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
203
+ N, M, x, w, w_stride,
204
+ mx, rx, my, ry, y);
205
+ }
206
+
207
+ __global__ void kernel_mm_one_fp16i8(
208
+ const int N, const int M,
209
+ const __half *__restrict__ const x,
210
+ const uint8_t *__restrict__ const w, const int w_stride,
211
+ const __half *__restrict__ const mx,
212
+ const __half *__restrict__ const rx,
213
+ const __half *__restrict__ const my,
214
+ const __half *__restrict__ const ry,
215
+ float *__restrict__ const y) {
216
+
217
+ const int k = blockIdx.y * blockDim.y + threadIdx.y;
218
+ const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
219
+ const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
220
+
221
+ if (k < M) {
222
+ float y_local = 0;
223
+ for (int j = j0; j < j1; ++j) {
224
+ y_local += __half2float(x[j]) * (
225
+ (float(w[j * w_stride + k]) + 0.5f)
226
+ * __half2float(rx[k]) * __half2float(ry[j])
227
+ + __half2float(mx[k]) + __half2float(my[j])
228
+ );
229
+ }
230
+ atomicAdd(&y[k], y_local);
231
+ }
232
+ }
233
+
234
+ template <>
235
+ void cuda_mm8_one<fp16>(int N, int M,
236
+ fp16 *x,
237
+ uint8_t *w, int w_stride,
238
+ fp16 *mx, fp16 *rx,
239
+ fp16 *my, fp16 *ry,
240
+ float *y) {
241
+ dim3 blockSize(1, MM8_ONE_TILE);
242
+ dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
243
+ kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
244
+ N, M, cast(x), w, w_stride,
245
+ cast(mx), cast(rx), cast(my), cast(ry), y);
246
+ }
cuda/rwkv5.cu ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <stdio.h>
2
+ #include <assert.h>
3
+ #include "ATen/ATen.h"
4
+ typedef at::BFloat16 bf16;
5
+ typedef at::Half fp16;
6
+ typedef float fp32;
7
+
8
+ template <typename F>
9
+ __global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
10
+ const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
11
+ F *__restrict__ const _y)
12
+ {
13
+ const int b = blockIdx.x / H;
14
+ const int h = blockIdx.x % H;
15
+ const int i = threadIdx.x;
16
+ _w += h*_N_;
17
+ _u += h*_N_;
18
+ _state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
19
+
20
+ __shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
21
+
22
+ float state[_N_];
23
+ #pragma unroll
24
+ for (int j = 0; j < _N_; j++)
25
+ state[j] = _state[j];
26
+
27
+ __syncthreads();
28
+ u[i] = float(_u[i]);
29
+ w[i] = _w[i];
30
+ __syncthreads();
31
+
32
+ for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
33
+ {
34
+ __syncthreads();
35
+ r[i] = float(_r[t]);
36
+ k[i] = float(_k[t]);
37
+ __syncthreads();
38
+
39
+ const float v = float(_v[t]);
40
+ float y = 0;
41
+
42
+ #pragma unroll
43
+ for (int j = 0; j < _N_; j+=4)
44
+ {
45
+ const float4& r_ = (float4&)(r[j]);
46
+ const float4& k_ = (float4&)(k[j]);
47
+ const float4& w_ = (float4&)(w[j]);
48
+ const float4& u_ = (float4&)(u[j]);
49
+ float4& s = (float4&)(state[j]);
50
+ float4 x;
51
+
52
+ x.x = k_.x * v;
53
+ x.y = k_.y * v;
54
+ x.z = k_.z * v;
55
+ x.w = k_.w * v;
56
+
57
+ y += r_.x * (u_.x * x.x + s.x);
58
+ y += r_.y * (u_.y * x.y + s.y);
59
+ y += r_.z * (u_.z * x.z + s.z);
60
+ y += r_.w * (u_.w * x.w + s.w);
61
+
62
+ s.x = s.x * w_.x + x.x;
63
+ s.y = s.y * w_.y + x.y;
64
+ s.z = s.z * w_.z + x.z;
65
+ s.w = s.w * w_.w + x.w;
66
+ }
67
+ _y[t] = F(y);
68
+ }
69
+ #pragma unroll
70
+ for (int j = 0; j < _N_; j++)
71
+ _state[j] = state[j];
72
+ }
73
+
74
+ void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
75
+ {
76
+ assert(H*_N_ == C);
77
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
78
+ }
79
+ void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
80
+ {
81
+ assert(H*_N_ == C);
82
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
83
+ }
84
+ void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
85
+ {
86
+ assert(H*_N_ == C);
87
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
88
+ }
cuda/rwkv5_op.cpp ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include "ATen/ATen.h"
3
+ #include <c10/cuda/CUDAGuard.h>
4
+ typedef at::BFloat16 bf16;
5
+ typedef at::Half fp16;
6
+ typedef float fp32;
7
+
8
+ void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
9
+ void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
10
+ void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
11
+
12
+ void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
13
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
14
+ cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
15
+ }
16
+ void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
17
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
18
+ cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
19
+ }
20
+ void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
21
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
22
+ cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
23
+ }
24
+
25
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
26
+ m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
27
+ m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
28
+ m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
29
+ }
30
+ TORCH_LIBRARY(rwkv5, m) {
31
+ m.def("forward_bf16", forward_bf16);
32
+ m.def("forward_fp16", forward_fp16);
33
+ m.def("forward_fp32", forward_fp32);
34
+ }
cuda/rwkv6.cu ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <stdio.h>
2
+ #include <assert.h>
3
+ #include "ATen/ATen.h"
4
+ typedef at::BFloat16 bf16;
5
+ typedef at::Half fp16;
6
+ typedef float fp32;
7
+
8
+ template <typename F>
9
+ __global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
10
+ const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
11
+ F *__restrict__ const _y)
12
+ {
13
+ const int b = blockIdx.x / H;
14
+ const int h = blockIdx.x % H;
15
+ const int i = threadIdx.x;
16
+ _u += h*_N_;
17
+ _state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
18
+
19
+ __shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
20
+
21
+ float state[_N_];
22
+ #pragma unroll
23
+ for (int j = 0; j < _N_; j++)
24
+ state[j] = _state[j];
25
+
26
+ __syncthreads();
27
+ u[i] = float(_u[i]);
28
+ __syncthreads();
29
+
30
+ for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
31
+ {
32
+ __syncthreads();
33
+ w[i] = _w[t];
34
+ r[i] = float(_r[t]);
35
+ k[i] = float(_k[t]);
36
+ __syncthreads();
37
+
38
+ const float v = float(_v[t]);
39
+ float y = 0;
40
+
41
+ #pragma unroll
42
+ for (int j = 0; j < _N_; j+=4)
43
+ {
44
+ const float4& r_ = (float4&)(r[j]);
45
+ const float4& k_ = (float4&)(k[j]);
46
+ const float4& w_ = (float4&)(w[j]);
47
+ const float4& u_ = (float4&)(u[j]);
48
+ float4& s = (float4&)(state[j]);
49
+ float4 x;
50
+
51
+ x.x = k_.x * v;
52
+ x.y = k_.y * v;
53
+ x.z = k_.z * v;
54
+ x.w = k_.w * v;
55
+
56
+ y += r_.x * (u_.x * x.x + s.x);
57
+ y += r_.y * (u_.y * x.y + s.y);
58
+ y += r_.z * (u_.z * x.z + s.z);
59
+ y += r_.w * (u_.w * x.w + s.w);
60
+
61
+ s.x = s.x * w_.x + x.x;
62
+ s.y = s.y * w_.y + x.y;
63
+ s.z = s.z * w_.z + x.z;
64
+ s.w = s.w * w_.w + x.w;
65
+ }
66
+ _y[t] = F(y);
67
+ }
68
+ #pragma unroll
69
+ for (int j = 0; j < _N_; j++)
70
+ _state[j] = state[j];
71
+ }
72
+
73
+ void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
74
+ {
75
+ assert(H*_N_ == C);
76
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
77
+ }
78
+ void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
79
+ {
80
+ assert(H*_N_ == C);
81
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
82
+ }
83
+ void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
84
+ {
85
+ assert(H*_N_ == C);
86
+ kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
87
+ }
cuda/rwkv6_op.cpp ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include "ATen/ATen.h"
3
+ #include <c10/cuda/CUDAGuard.h>
4
+ typedef at::BFloat16 bf16;
5
+ typedef at::Half fp16;
6
+ typedef float fp32;
7
+
8
+ void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
9
+ void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
10
+ void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
11
+
12
+ void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
13
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
14
+ cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
15
+ }
16
+ void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
17
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
18
+ cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
19
+ }
20
+ void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
21
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
22
+ cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
23
+ }
24
+
25
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
26
+ m.def("forward_bf16", &forward_bf16, "rwkv6 forward_bf16");
27
+ m.def("forward_fp16", &forward_fp16, "rwkv6 forward_fp16");
28
+ m.def("forward_fp32", &forward_fp32, "rwkv6 forward_fp32");
29
+ }
30
+ TORCH_LIBRARY(rwkv6, m) {
31
+ m.def("forward_bf16", forward_bf16);
32
+ m.def("forward_fp16", forward_fp16);
33
+ m.def("forward_fp32", forward_fp32);
34
+ }
cuda/wrapper.cpp ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+ #include "ATen/ATen.h"
3
+ #include <iostream>
4
+ #include <c10/cuda/CUDAGuard.h>
5
+
6
+ typedef at::Half fp16;
7
+
8
+ template <typename F>
9
+ void cuda_wkv_forward(int B, int T, int C,
10
+ float *w, float *u, F *k, F *v, F *y,
11
+ float *aa, float *bb, float *pp);
12
+ template <typename F>
13
+ void cuda_mm8_seq(int B, int N, int M,
14
+ F *x, int x_stride,
15
+ uint8_t *w, int w_stride,
16
+ F *mx, F *rx,
17
+ F *my, F *ry,
18
+ F *y, int y_stride);
19
+ template <typename F>
20
+ void cuda_mm8_one(int N, int M,
21
+ F *x,
22
+ uint8_t *w, int w_stride,
23
+ F *mx, F *rx,
24
+ F *my, F *ry,
25
+ float *y);
26
+
27
+ void wkv_forward(int64_t B, int64_t T, int64_t C,
28
+ torch::Tensor &w, torch::Tensor &u,
29
+ torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
30
+ torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
31
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
32
+ switch (k.scalar_type()) {
33
+ case c10::ScalarType::Half:
34
+ cuda_wkv_forward(B, T, C,
35
+ w.data_ptr<float>(), u.data_ptr<float>(),
36
+ k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
37
+ aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
38
+ break;
39
+ case c10::ScalarType::Float:
40
+ cuda_wkv_forward(B, T, C,
41
+ w.data_ptr<float>(), u.data_ptr<float>(),
42
+ k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
43
+ aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
44
+ break;
45
+ default:
46
+ assert(false && "Only FP16 and FP32 are currently supported");
47
+ }
48
+ }
49
+
50
+ void mm8_seq(int64_t B, int64_t N, int64_t M,
51
+ torch::Tensor &x, torch::Tensor &w,
52
+ torch::Tensor &mx, torch::Tensor &rx,
53
+ torch::Tensor &my, torch::Tensor &ry,
54
+ torch::Tensor &y) {
55
+ assert(x.stride(1) == 1);
56
+ assert(w.stride(1) == 1);
57
+ assert(mx.stride(0) == 1 && rx.stride(0) == 1);
58
+ assert(my.stride(0) == 1 && ry.stride(0) == 1);
59
+ assert(y.stride(1) == 1);
60
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
61
+ switch (x.scalar_type()) {
62
+ case c10::ScalarType::Half:
63
+ cuda_mm8_seq(
64
+ B, N, M,
65
+ x.data_ptr<fp16>(), x.stride(0),
66
+ w.data_ptr<uint8_t>(), w.stride(0),
67
+ mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
68
+ my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
69
+ y.data_ptr<fp16>(), y.stride(0));
70
+ break;
71
+ case c10::ScalarType::Float:
72
+ cuda_mm8_seq(
73
+ B, N, M,
74
+ x.data_ptr<float>(), x.stride(0),
75
+ w.data_ptr<uint8_t>(), w.stride(0),
76
+ mx.data_ptr<float>(), rx.data_ptr<float>(),
77
+ my.data_ptr<float>(), ry.data_ptr<float>(),
78
+ y.data_ptr<float>(), y.stride(0));
79
+ break;
80
+ default:
81
+ assert(false && "Only FP16 and FP32 are currently supported");
82
+ }
83
+ }
84
+ void mm8_one(int64_t N, int64_t M,
85
+ torch::Tensor &x, torch::Tensor &w,
86
+ torch::Tensor &mx, torch::Tensor &rx,
87
+ torch::Tensor &my, torch::Tensor &ry,
88
+ torch::Tensor &y) {
89
+ assert(x.stride(0) == 1);
90
+ assert(w.stride(1) == 1);
91
+ assert(mx.stride(0) == 1 && rx.stride(0) == 1);
92
+ assert(my.stride(0) == 1 && ry.stride(0) == 1);
93
+ assert(y.stride(0) == 1);
94
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
95
+ switch (x.scalar_type()) {
96
+ case c10::ScalarType::Half:
97
+ cuda_mm8_one(
98
+ N, M,
99
+ x.data_ptr<fp16>(),
100
+ w.data_ptr<uint8_t>(), w.stride(0),
101
+ mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
102
+ my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
103
+ y.data_ptr<float>());
104
+ break;
105
+ case c10::ScalarType::Float:
106
+ cuda_mm8_one(
107
+ N, M,
108
+ x.data_ptr<float>(),
109
+ w.data_ptr<uint8_t>(), w.stride(0),
110
+ mx.data_ptr<float>(), rx.data_ptr<float>(),
111
+ my.data_ptr<float>(), ry.data_ptr<float>(),
112
+ y.data_ptr<float>());
113
+ break;
114
+ default:
115
+ assert(false && "Only FP16 and FP32 are currently supported");
116
+ }
117
+ }
118
+
119
+ using torch::Tensor;
120
+
121
+ #ifndef DISABLE_CUBLAS_GEMM
122
+ void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
123
+ #endif
124
+
125
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
126
+ m.def("wkv_forward", &wkv_forward, "wkv forward");
127
+ m.def("mm8_seq", &mm8_seq, "mm8 seq");
128
+ m.def("mm8_one", &mm8_one, "mm8 one");
129
+ #ifndef DISABLE_CUBLAS_GEMM
130
+ m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
131
+ #endif
132
+ }
133
+
134
+ TORCH_LIBRARY(rwkv, m) {
135
+ m.def("wkv_forward", wkv_forward);
136
+ m.def("mm8_seq", mm8_seq);
137
+ m.def("mm8_one", mm8_one);
138
+ #ifndef DISABLE_CUBLAS_GEMM
139
+ m.def("gemm_fp16_cublas", gemm_fp16_cublas);
140
+ #endif
141
+ }
examples_bluejay.jpg ADDED
examples_extreme_ironing.jpg ADDED
examples_pizza.jpg ADDED
examples_waterview.jpg ADDED
examples_woman_and_dog.png ADDED
modeling_rwkv.py ADDED
@@ -0,0 +1,1237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ########################################################################################################
2
+ # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
3
+ ########################################################################################################
4
+
5
+ from typing import Optional
6
+ import types, gc, os, time, re
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.nn import functional as F
10
+ torch.backends.cudnn.benchmark = True
11
+ torch.backends.cudnn.allow_tf32 = True
12
+ torch.backends.cuda.matmul.allow_tf32 = True
13
+ current_path = os.path.dirname(os.path.abspath(__file__))
14
+
15
+ ########################################################################################################
16
+
17
+ if os.environ.get('RWKV_JIT_ON') != '0':
18
+ os.environ["RWKV_JIT_ON"] = '1'
19
+ MyModule = torch.jit.ScriptModule
20
+ MyFunction = torch.jit.script_method
21
+ MyStatic = torch.jit.script
22
+ else:
23
+ MyModule = torch.nn.Module
24
+ def __nop(ob):
25
+ return ob
26
+ MyFunction = __nop
27
+ MyStatic = __nop
28
+
29
+ if os.environ.get('RWKV_CUDA_ON') == '1':
30
+ from torch.utils.cpp_extension import load
31
+ try:
32
+ load(
33
+ name=f"wkv_cuda",
34
+ sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu", f"{current_path}/cuda/gemm_fp16_cublas.cpp"],
35
+ verbose=True,
36
+ extra_ldflags=["cublas.lib" if os.name == "nt" else ""],
37
+ extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
38
+ is_python_module=False)
39
+ DISABLE_CUBLAS_GEMM = False
40
+ except:
41
+ print("Failed to build cuBLAS matmul, falling back to torch.matmul. Small model with fp16 will overflow.")
42
+ load(
43
+ name=f"wkv_cuda",
44
+ sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
45
+ verbose=True,
46
+ extra_cuda_cflags=["--use_fast_math", "-O3", "--extra-device-vectorization"],
47
+ extra_cflags=["-DDISABLE_CUBLAS_GEMM"],
48
+ is_python_module=False)
49
+ DISABLE_CUBLAS_GEMM = True
50
+
51
+ @MyStatic
52
+ def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
53
+ assert 1 * C % min(C, 32) == 0
54
+ assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
55
+ assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
56
+ w = w.contiguous()
57
+ u = u.contiguous()
58
+ k = k.contiguous()
59
+ v = v.contiguous()
60
+ y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
61
+ torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
62
+ return y, aa, bb, pp
63
+ @MyStatic
64
+ def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
65
+ assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
66
+ assert x.dtype == torch.float32 or x.dtype == torch.float16
67
+ assert w.dtype == torch.uint8
68
+ assert x.shape == (B, N)
69
+ assert w.shape == (N, M)
70
+ assert rx.shape == mx.shape == (M,)
71
+ assert ry.shape == my.shape == (N, 1)
72
+ y = torch.empty((B, M), device=w.device, dtype=x.dtype)
73
+ torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
74
+ return y
75
+ @MyStatic
76
+ def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
77
+ assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
78
+ assert x.dtype == torch.float32 or x.dtype == torch.float16
79
+ assert w.dtype == torch.uint8
80
+ assert x.shape == (N,)
81
+ assert w.shape == (N, M)
82
+ assert rx.shape == mx.shape == (M,)
83
+ assert ry.shape == my.shape == (N, 1)
84
+ y = torch.zeros((M,), device=w.device, dtype=torch.float32)
85
+ torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
86
+ return y.to(dtype=x.dtype)
87
+ else:
88
+ os.environ["RWKV_CUDA_ON"] = '0'
89
+
90
+
91
+ @MyStatic
92
+ def torch_mm8_seq(x, w, mx, rx, my, ry):
93
+ return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
94
+
95
+ @MyStatic
96
+ def torch_mm8_one(x, w, mx, rx, my, ry):
97
+ return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
98
+
99
+ if os.environ.get('RWKV_CUDA_ON') == '1':
100
+ @MyStatic
101
+ def mm8_seq(x, w, mx, rx, my, ry):
102
+ if w.device.type == 'cuda' and x.dtype == torch.float16:
103
+ B, N, M = x.shape[0], w.shape[0], w.shape[1]
104
+ return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
105
+ else:
106
+ return torch_mm8_seq(x, w, mx, rx, my, ry)
107
+ @MyStatic
108
+ def mm8_one(x, w, mx, rx, my, ry):
109
+ if w.device.type == 'cuda':
110
+ N, M = w.shape[0], w.shape[1]
111
+ return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
112
+ else:
113
+ return torch_mm8_one(x, w, mx, rx, my, ry)
114
+ else:
115
+ @MyStatic
116
+ def mm8_seq(x, w, mx, rx, my, ry):
117
+ return torch_mm8_seq(x, w, mx, rx, my, ry)
118
+ @MyStatic
119
+ def mm8_one(x, w, mx, rx, my, ry):
120
+ return torch_mm8_one(x, w, mx, rx, my, ry)
121
+
122
+ def mm8(x: torch.Tensor, w: torch.Tensor, mx: torch.Tensor, rx: torch.Tensor, my: torch.Tensor, ry: torch.Tensor):
123
+ if len(x.shape) == 1:
124
+ return mm8_one(x, w, mx, rx, my, ry)
125
+ return mm8_seq(x, w, mx, rx, my, ry)
126
+
127
+ def matmul(a, b, mx: Optional[torch.Tensor]=None, rx: Optional[torch.Tensor]=None, my: Optional[torch.Tensor]=None, ry: Optional[torch.Tensor]=None, output_dtype: Optional[torch.dtype]=None) -> torch.Tensor:
128
+ if output_dtype is None:
129
+ output_dtype = a.dtype
130
+ if b.dtype in [torch.float16, torch.bfloat16, torch.float32]:
131
+ assert a.dtype == b.dtype
132
+ return matmul_float(a, b, output_dtype=output_dtype)
133
+ elif b.dtype == torch.uint8:
134
+ assert mx is not None
135
+ assert rx is not None
136
+ assert my is not None
137
+ assert ry is not None
138
+ return mm8(a, b, mx, rx, my, ry).to(output_dtype)
139
+ else:
140
+ raise ValueError("Unsupported dtype")
141
+
142
+
143
+ if os.environ.get('RWKV_CUDA_ON') == '1' and not DISABLE_CUBLAS_GEMM:
144
+ def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
145
+ if output_dtype is None:
146
+ output_dtype = a.dtype
147
+ if a.dtype == b.dtype == torch.float16 and a.device.type == 'cuda':
148
+ if len(a.shape) == 1:
149
+ assert len(b.shape) == 2
150
+ c = torch.empty((b.shape[-1],), dtype=output_dtype, device=a.device)
151
+ a = a.unsqueeze(0)
152
+ else:
153
+ assert len(a.shape) == len(b.shape)
154
+ assert len(a.shape) == 2 or len(a.shape) == 3
155
+ # torch.empty((*a.shape[:-1], b.shape[-1])) doesn't work with jit
156
+ if len(a.shape) == 2:
157
+ c = torch.empty((a.shape[0], b.shape[-1]), dtype=output_dtype, device=a.device)
158
+ else:
159
+ c = torch.empty((a.shape[0], a.shape[1], b.shape[-1]), dtype=output_dtype, device=a.device)
160
+ torch.ops.rwkv.gemm_fp16_cublas(a, b, c)
161
+ return c
162
+ else:
163
+ return (a @ b).to(output_dtype)
164
+
165
+ else:
166
+ def matmul_float(a, b, output_dtype: Optional[torch.dtype]=None):
167
+ return (a @ b).to(output_dtype)
168
+
169
+
170
+ if os.environ.get('RWKV_DML_ON') == '1':
171
+ import torch_directml
172
+ print("PyTorch with DirectML Enabled")
173
+
174
+ ########################################################################################################
175
+
176
+ class RWKV(MyModule):
177
+ def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
178
+ super().__init__()
179
+ if verbose:
180
+ prxxx = lambda *args, **kwargs: print(*args, **kwargs)
181
+ else:
182
+ prxxx = lambda *args, **kwargs: None
183
+
184
+ STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
185
+ if not re.match(STRATEGY_REGEX, strategy):
186
+ raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
187
+
188
+ strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
189
+ self.args = types.SimpleNamespace()
190
+ args = self.args
191
+ args.MODEL_NAME = model
192
+ args.strategy_string = strategy
193
+
194
+ # Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
195
+ try:
196
+ self.RESCALE_LAYER = int(os.environ["RWKV_RESCALE_LAYER"]) # !!! NOTE: SEEMS YOU SHOULD SET IT TO 999 (disable) FOR RWKV-MUSIC MODELS !!!
197
+ except:
198
+ self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
199
+ prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
200
+
201
+ args.MODEL_NAME = args.MODEL_NAME.strip()
202
+ if not args.MODEL_NAME.endswith('.pth'):
203
+ args.MODEL_NAME += '.pth'
204
+ prxxx(f'Loading {args.MODEL_NAME} ...')
205
+ with torch.no_grad():
206
+ self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
207
+ gc.collect()
208
+ w = self.w
209
+
210
+ ALREADY_CONVERTED = False
211
+ if '_strategy' in w:
212
+ ALREADY_CONVERTED = True
213
+ assert convert_and_save_and_exit == None # you should only convert a raw model
214
+ prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
215
+ assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
216
+ assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
217
+ assert w['_rescale_layer'] == self.RESCALE_LAYER # must use same RESCALE_LAYER to avoid mistakes
218
+ del w['_strategy']
219
+ del w['_version']
220
+ del w['_rescale_layer']
221
+
222
+ args.n_embd = w['emb.weight'].shape[1]
223
+ args.n_att = w['blocks.0.att.key.weight'].shape[0] # note: transposed matrix
224
+ args.n_ffn = w['blocks.0.ffn.key.weight'].shape[0] # note: transposed matrix
225
+ args.n_layer = 0
226
+ keys = list(w.keys())
227
+ self.version = 4
228
+ for x in keys:
229
+ layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
230
+ args.n_layer = max(args.n_layer, layer_id+1)
231
+ if 'ln_x' in x:
232
+ self.version = max(5, self.version)
233
+ if 'gate.weight' in x:
234
+ self.version = max(5.1, self.version)
235
+ if int(self.version) == 5 and 'att.time_decay' in x:
236
+ args.n_head = w[x].shape[0]
237
+ if len(w[x].shape) > 1:
238
+ if w[x].shape[1] > 1:
239
+ self.version = max(5.2, self.version)
240
+ if 'time_maa' in x:
241
+ self.version = max(6, self.version)
242
+ if int(self.version) == 6 and 'time_faaaa' in x:
243
+ args.n_head = w[x].shape[0]
244
+ prxxx(f'Model detected: v{self.version:.1f}')
245
+
246
+ ####################### Compute strategy
247
+
248
+ s = [x.strip().split(' ') for x in strategy.split('->')]
249
+ plan = [0] * len(s)
250
+ stream_i = -1
251
+ stream_count = 0
252
+ to_allocate = args.n_layer + 1
253
+ allocated = 0
254
+ free_slots = 0
255
+ for i in range(len(s)):
256
+ si = s[i]
257
+ si1 = si[1]
258
+ if si1.startswith('fp32'): si[1] = [torch.float]
259
+ elif si1.startswith('fp16'): si[1] = [torch.float16]
260
+ elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
261
+ if si1.endswith('i8'): si[1] += [torch.uint8]
262
+ else: si[1] += [si[1][0]]
263
+ if len(si) > 2:
264
+ ss = si[2]
265
+ assert ss.startswith('*')
266
+ if ss.endswith('+'):
267
+ plan[i] = int(ss[1:-1])
268
+ stream_i = i
269
+ else:
270
+ plan[i] = int(ss[1:])
271
+ allocated += plan[i]
272
+ if allocated >= to_allocate:
273
+ plan[i] += to_allocate - allocated
274
+ break
275
+ else:
276
+ free_slots += 1
277
+ if stream_i < 0:
278
+ if free_slots > 0 and to_allocate > allocated:
279
+ for i in range(len(s)):
280
+ if plan[i] == 0:
281
+ plan[i] = (to_allocate - allocated) // free_slots
282
+ allocated += plan[i]
283
+ free_slots -= 1
284
+ if to_allocate > allocated:
285
+ plan[len(s)-1] += to_allocate - allocated
286
+ else:
287
+ if to_allocate > allocated:
288
+ stream_count = to_allocate - allocated
289
+ plan[stream_i] += stream_count
290
+ prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
291
+ for i in range(len(s)):
292
+ ss = s[i]
293
+ if i != stream_i:
294
+ prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
295
+ else:
296
+ prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
297
+ plan[i] += (0 if i == 0 else plan[i-1])
298
+ self.strategy = [None] * (args.n_layer + 1)
299
+ strategy = self.strategy
300
+ for n in range(args.n_layer + 1):
301
+ for i in range(len(s)):
302
+ if n < plan[i]:
303
+ strategy[n] = types.SimpleNamespace()
304
+ strategy[n].device = s[i][0]
305
+ strategy[n].atype = s[i][1][0]
306
+ strategy[n].wtype = s[i][1][1]
307
+ strategy[n].stream = False
308
+ if strategy[n].device == 'dml':
309
+ strategy[n].device = torch_directml.device()
310
+ if i == stream_i and n >= (plan[i] - stream_count):
311
+ strategy[n].stream = True
312
+ break
313
+ prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
314
+ prxxx()
315
+
316
+ ####################### Load weights to self.w
317
+
318
+ if not ALREADY_CONVERTED:
319
+ try: # precompute embedding
320
+ w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
321
+ except:
322
+ w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
323
+ # del w['blocks.0.ln0.weight']
324
+ # del w['blocks.0.ln0.bias']
325
+
326
+ print_need_newline = False
327
+
328
+ REAL_TIME_FIRST = False
329
+ for x in list(w.keys()):
330
+ if '.time_faaaa' in x: REAL_TIME_FIRST = True
331
+ if REAL_TIME_FIRST:
332
+ w = {k.replace('.time_faaaa','.time_first') if '.time_faaaa' in k else k: v for k, v in w.items()}
333
+ self.w = w
334
+
335
+ keys = list(w.keys())
336
+ for x in keys:
337
+ w[x].requires_grad = False
338
+ layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
339
+ if ('ln_out.' in x) or ('head.' in x):
340
+ layer_id = args.n_layer
341
+ dd = strategy[layer_id]
342
+ DEVICE = dd.device
343
+ ATYPE = dd.atype
344
+ WTYPE = dd.wtype
345
+
346
+ if not ALREADY_CONVERTED:
347
+ if self.RESCALE_LAYER > 0:
348
+ if 'att.output.weight' in x:
349
+ w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
350
+ if 'ffn.value.weight' in x:
351
+ w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
352
+
353
+ if '.time_' in x:
354
+ w[x] = w[x].squeeze()
355
+ if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'gate.weight' in x or 'output.weight' in x or 'head.weight' in x:
356
+ w[x] = w[x].t()
357
+
358
+ if '.time_decay' in x and '_w' not in x: # need fp32 for this
359
+ if self.version == 4:
360
+ w[x] = -torch.exp(w[x].float())
361
+ elif int(self.version) == 5:
362
+ w[x] = torch.exp(-torch.exp(w[x].float())).reshape(-1,1,1)
363
+ if self.version == 5.2:
364
+ w[x] = w[x].reshape(args.n_head, -1, 1)
365
+ elif self.version == 6.0:
366
+ w[x] = w[x].float().reshape(args.n_head, -1, 1)
367
+ elif '.time_first' in x: # need fp32 for this
368
+ if self.version == 4:
369
+ w[x] = w[x].float()
370
+ elif int(self.version) in [5, 6]:
371
+ if REAL_TIME_FIRST:
372
+ w[x] = w[x].float().reshape(-1,1,1)
373
+ else:
374
+ w[x] = torch.exp(w[x].float()).reshape(-1,1,1)
375
+ if self.version in [5.2, 6.0]:
376
+ w[x] = w[x].reshape(args.n_head, -1, 1)
377
+ elif '.ln_x' in x: # need fp32 for group_norm
378
+ w[x] = w[x].float()
379
+ else:
380
+ if (len(w[x].shape) == 2) and ('emb' not in x):
381
+ if WTYPE != torch.uint8:
382
+ w[x] = w[x].to(dtype=WTYPE)
383
+ else:
384
+ w[x] = w[x].float()
385
+
386
+ if w[x].shape[0] > w[x].shape[1]:
387
+ w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
388
+ w[x] = w[x] - w[x+'_my']
389
+ w[x+'_mx'] = torch.amin(w[x], dim=0)
390
+ w[x] = w[x] - w[x+'_mx']
391
+ w[x+'_rx'] = torch.amax(w[x], dim=0)
392
+ w[x] = w[x] / w[x+'_rx']
393
+ w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
394
+ w[x] = w[x] / w[x+'_ry']
395
+ else:
396
+ w[x+'_mx'] = torch.amin(w[x], dim=0)
397
+ w[x] = w[x] - w[x+'_mx']
398
+ w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
399
+ w[x] = w[x] - w[x+'_my']
400
+ w[x+'_rx'] = torch.amax(w[x], dim=0)
401
+ w[x] = w[x] / w[x+'_rx']
402
+ w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
403
+ w[x] = w[x] / w[x+'_ry']
404
+
405
+ w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
406
+ w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
407
+ w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
408
+ w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
409
+ w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
410
+ else:
411
+ w[x] = w[x].to(dtype=ATYPE)
412
+
413
+ if convert_and_save_and_exit == None:
414
+ if 'emb.' in x:
415
+ w[x] = w[x].contiguous()
416
+ elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
417
+ try:
418
+ w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
419
+ except:
420
+ print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
421
+ elif DEVICE != 'cpu':
422
+ w[x] = w[x].to(device=DEVICE).contiguous()
423
+
424
+ if (dd.stream) or (DEVICE != 'cpu'):
425
+ try:
426
+ w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
427
+ w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
428
+ w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
429
+ w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
430
+ except:
431
+ pass
432
+
433
+ if 'ffn.value.weight' in x:
434
+ gc.collect()
435
+ if 'cuda' in args.strategy_string:
436
+ torch.cuda.empty_cache()
437
+
438
+ shape = [i for i in w[x].shape if i != 1]
439
+ if len(shape) > 1:
440
+ shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
441
+ else:
442
+ shape = f" {str(shape[0]).rjust(5)} "
443
+ if layer_id == 0 or layer_id >= args.n_layer-1:
444
+ if print_need_newline:
445
+ prxxx('\n', end = '')
446
+ print_need_newline = False
447
+ dt = str(w[x].dtype).replace('torch.', '')
448
+ dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
449
+ prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
450
+ else:
451
+ print_need_newline = True
452
+ prxxx('.', end = '', flush = True)
453
+
454
+ if convert_and_save_and_exit:
455
+ w['_strategy'] = args.strategy_string
456
+ w['_rescale_layer'] = self.RESCALE_LAYER
457
+ w['_version'] = '0.7'
458
+ if not convert_and_save_and_exit.endswith('.pth'):
459
+ convert_and_save_and_exit += '.pth'
460
+ prxxx(f'Saving to {convert_and_save_and_exit}...')
461
+ torch.save(w, convert_and_save_and_exit)
462
+ prxxx(f'Converted and saved. Now this will exit.')
463
+ exit(0)
464
+
465
+ if self.version == 5.2 and os.environ["RWKV_CUDA_ON"] == '1':
466
+ HEAD_SIZE = args.n_att // args.n_head
467
+ rwkv5 = load(name="rwkv5", sources=[f"{current_path}/cuda/rwkv5_op.cpp", f"{current_path}/cuda/rwkv5.cu"],
468
+ verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3" if os.name != "nt" else "", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}"])
469
+
470
+ class RWKV_5(torch.autograd.Function):
471
+ @staticmethod
472
+ def forward(ctx, B, T, C, H, state, r, k, v, w, u):
473
+ with torch.no_grad():
474
+ assert HEAD_SIZE == C // H
475
+ ctx.B = B
476
+ ctx.T = T
477
+ ctx.C = C
478
+ ctx.H = H
479
+ assert state.dtype == torch.float32
480
+ assert w.dtype == torch.float32
481
+ assert r.is_contiguous()
482
+ assert k.is_contiguous()
483
+ assert v.is_contiguous()
484
+ assert w.is_contiguous()
485
+ assert u.is_contiguous()
486
+ assert state.is_contiguous()
487
+
488
+ y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
489
+ if r.dtype == torch.bfloat16:
490
+ rwkv5.forward_bf16(B, T, C, H, state, r, k, v, w, u, y)
491
+ elif r.dtype == torch.float16:
492
+ rwkv5.forward_fp16(B, T, C, H, state, r, k, v, w, u, y)
493
+ elif r.dtype == torch.float32:
494
+ rwkv5.forward_fp32(B, T, C, H, state, r, k, v, w, u, y)
495
+ return y, state
496
+ self.RWKV_5 = RWKV_5
497
+
498
+ if self.version == 6.0 and os.environ["RWKV_CUDA_ON"] == '1':
499
+ HEAD_SIZE = args.n_att // args.n_head
500
+ rwkv6 = load(name="rwkv6", sources=[f"{current_path}/cuda/rwkv6_op.cpp", f"{current_path}/cuda/rwkv6.cu"],
501
+ verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}", f"-D_T_={4096}"])
502
+
503
+ class RWKV_6(torch.autograd.Function):
504
+ @staticmethod
505
+ def forward(ctx, B, T, C, H, state, r, k, v, w, u):
506
+ with torch.no_grad():
507
+ assert HEAD_SIZE == C // H
508
+ ctx.B = B
509
+ ctx.T = T
510
+ ctx.C = C
511
+ ctx.H = H
512
+ assert state.dtype == torch.float32
513
+ assert w.dtype == torch.float32
514
+ assert r.is_contiguous()
515
+ assert k.is_contiguous()
516
+ assert v.is_contiguous()
517
+ assert w.is_contiguous()
518
+ assert u.is_contiguous()
519
+ eew = torch.exp(-torch.exp(w.float())).contiguous()
520
+
521
+ y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
522
+ if r.dtype == torch.bfloat16:
523
+ rwkv6.forward_bf16(B, T, C, H, state, r, k, v, eew, u, y)
524
+ elif r.dtype == torch.float16:
525
+ rwkv6.forward_fp16(B, T, C, H, state, r, k, v, eew, u, y)
526
+ elif r.dtype == torch.float32:
527
+ rwkv6.forward_fp32(B, T, C, H, state, r, k, v, eew, u, y)
528
+ return y, state
529
+ self.RWKV_6 = RWKV_6
530
+
531
+ gc.collect()
532
+ if 'cuda' in args.strategy_string:
533
+ torch.cuda.empty_cache()
534
+
535
+ def RUN_RWKV_5(self, B, T, C, H, state, r, k, v, w, u):
536
+ return self.RWKV_5.apply(B, T, C, H, state, r, k, v, w, u)
537
+
538
+ def RUN_RWKV_6(self, B, T, C, H, state, r, k, v, w, u):
539
+ return self.RWKV_6.apply(B, T, C, H, state, r, k, v, w, u)
540
+
541
+ ########################################################################################################
542
+
543
+ @MyFunction
544
+ def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
545
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
546
+ kx = xx * k_mix + sx * (1 - k_mix)
547
+ rx = xx * r_mix + sx * (1 - r_mix)
548
+
549
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
550
+ vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
551
+ out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
552
+ return x + out, xx
553
+
554
+ @MyFunction
555
+ def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
556
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
557
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
558
+ kx = xx * k_mix + sx * (1 - k_mix)
559
+ rx = xx * r_mix + sx * (1 - r_mix)
560
+
561
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
562
+ vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
563
+ out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
564
+ return x + out, xx[-1,:]
565
+
566
+ @MyFunction
567
+ def ffn_one_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
568
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
569
+ sx = sx - xx
570
+ kx = xx + sx * k_maa
571
+ rx = xx + sx * r_maa
572
+
573
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
574
+ vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
575
+ out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
576
+ return x + out, xx
577
+
578
+ @MyFunction
579
+ def ffn_seq_v6(self, x, sx, ln_w, ln_b, k_maa, r_maa, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
580
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
581
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
582
+ sx = sx - xx
583
+ kx = xx + sx * k_maa
584
+ rx = xx + sx * r_maa
585
+
586
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
587
+ vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
588
+ out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
589
+ return x + out, xx[-1,:]
590
+
591
+ ########################################################################################################
592
+
593
+ @MyFunction
594
+ def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
595
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
596
+ kx = xx * k_mix + sx * (1 - k_mix)
597
+ vx = xx * v_mix + sx * (1 - v_mix)
598
+ rx = xx * r_mix + sx * (1 - r_mix)
599
+
600
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
601
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
602
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
603
+
604
+ ww = t_first + k
605
+ p = torch.maximum(pp, ww)
606
+ e1 = torch.exp(pp - p)
607
+ e2 = torch.exp(ww - p)
608
+ wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
609
+ ww = t_decay + pp
610
+ p = torch.maximum(ww, k)
611
+ e1 = torch.exp(ww - p)
612
+ e2 = torch.exp(k - p)
613
+
614
+ out = matmul(r * wkv, ow, omx, orx, omy, ory)
615
+ return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
616
+
617
+ @MyFunction
618
+ def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
619
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
620
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
621
+ kx = xx * k_mix + sx * (1 - k_mix)
622
+ vx = xx * v_mix + sx * (1 - v_mix)
623
+ rx = xx * r_mix + sx * (1 - r_mix)
624
+
625
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
626
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
627
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
628
+
629
+ T = x.shape[0]
630
+ for t in range(T):
631
+ kk = k[t]
632
+ vv = v[t]
633
+ ww = t_first + kk
634
+ p = torch.maximum(pp, ww)
635
+ e1 = torch.exp(pp - p)
636
+ e2 = torch.exp(ww - p)
637
+ sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
638
+ ww = t_decay + pp
639
+ p = torch.maximum(ww, kk)
640
+ e1 = torch.exp(ww - p)
641
+ e2 = torch.exp(kk - p)
642
+ aa = e1 * aa + e2 * vv
643
+ bb = e1 * bb + e2
644
+ pp = p
645
+ out = matmul(r * sx, ow, omx, orx, omy, ory)
646
+ return x + out, xx[-1,:], aa, bb, pp
647
+
648
+ ########################################################################################################
649
+
650
+ @MyFunction
651
+ def att_one_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
652
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
653
+ kx = xx * k_mix + sx * (1 - k_mix)
654
+ vx = xx * v_mix + sx * (1 - v_mix)
655
+ rx = xx * r_mix + sx * (1 - r_mix)
656
+
657
+ H = t_decay.shape[0]
658
+ N = x.shape[-1] // H
659
+
660
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
661
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
662
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
663
+
664
+ a = matmul(k, v)
665
+ out = r @ (t_first * a + s)
666
+ s = a + t_decay * s
667
+
668
+ out = out.flatten()
669
+ out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
670
+ out = out.to(dtype=x.dtype)
671
+ out = matmul(out, ow, omx, orx, omy, ory)
672
+
673
+ return x + out, xx, s
674
+
675
+ @MyFunction
676
+ def att_seq_v5(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
677
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
678
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
679
+ kx = xx * k_mix + sx * (1 - k_mix)
680
+ vx = xx * v_mix + sx * (1 - v_mix)
681
+ rx = xx * r_mix + sx * (1 - r_mix)
682
+
683
+ H = t_decay.shape[0]
684
+ N = x.shape[-1] // H
685
+ T = x.shape[0]
686
+
687
+ w = t_decay.reshape(-1, 1)
688
+ u = t_first.reshape(-1, 1)
689
+ ws = w.pow(T).reshape(H, 1, 1)
690
+ ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
691
+ w = w.repeat(1, T).pow(ind)
692
+ wk = w.reshape(H, 1, T)
693
+ wb = wk.transpose(-2, -1).flip(1)
694
+ w = torch.cat([w[:, 1:], u], dim=1)
695
+ w = F.pad(w, (0, T))
696
+ w = torch.tile(w, [T])
697
+ w = w[:, :-T].reshape(-1, T, 2 * T - 1)
698
+ w = w[:, :, T-1:].reshape(H, T, T)
699
+
700
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
701
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
702
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
703
+
704
+ out = ((r @ k) * w) @ v + (r @ s) * wb
705
+ s = ws * s + (k * wk) @ v
706
+
707
+ out = out.transpose(0, 1).contiguous().reshape(T, H*N)
708
+ out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
709
+ out = out.to(dtype=x.dtype)
710
+ out = matmul(out, ow, omx, orx, omy, ory)
711
+
712
+ return x + out, xx[-1,:], s
713
+
714
+ ########################################################################################################
715
+
716
+ @MyFunction
717
+ def att_one_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
718
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
719
+ kx = xx * k_mix + sx * (1 - k_mix)
720
+ vx = xx * v_mix + sx * (1 - v_mix)
721
+ rx = xx * r_mix + sx * (1 - r_mix)
722
+ gx = xx * g_mix + sx * (1 - g_mix)
723
+
724
+ H = t_decay.shape[0]
725
+ N = x.shape[-1] // H
726
+
727
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
728
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
729
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
730
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
731
+
732
+ a = matmul(k, v)
733
+ out = r @ (t_first * a + s)
734
+ s = a + t_decay * s
735
+
736
+ out = out.flatten()
737
+ out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
738
+ out = out.to(dtype=x.dtype) * g
739
+ out = matmul(out, ow, omx, orx, omy, ory)
740
+
741
+ return x + out, xx, s
742
+
743
+ @MyFunction
744
+ def att_seq_v5_1(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
745
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
746
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
747
+ kx = xx * k_mix + sx * (1 - k_mix)
748
+ vx = xx * v_mix + sx * (1 - v_mix)
749
+ rx = xx * r_mix + sx * (1 - r_mix)
750
+ gx = xx * g_mix + sx * (1 - g_mix)
751
+
752
+ H = t_decay.shape[0]
753
+ N = x.shape[-1] // H
754
+ T = x.shape[0]
755
+
756
+ w = t_decay.reshape(-1, 1)
757
+ u = t_first.reshape(-1, 1)
758
+ ws = w.pow(T).reshape(H, 1, 1)
759
+ ind = torch.arange(T-1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
760
+ w = w.repeat(1, T).pow(ind)
761
+ wk = w.reshape(H, 1, T)
762
+ wb = wk.transpose(-2, -1).flip(1)
763
+ w = torch.cat([w[:, 1:], u], dim=1)
764
+ w = F.pad(w, (0, T))
765
+ w = torch.tile(w, [T])
766
+ w = w[:, :-T].reshape(-1, T, 2 * T - 1)
767
+ w = w[:, :, T-1:].reshape(H, T, T)
768
+
769
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
770
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
771
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
772
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
773
+
774
+ out = ((r @ k) * w) @ v + (r @ s) * wb
775
+ s = ws * s + (k * wk) @ v
776
+
777
+ out = out.transpose(0, 1).contiguous().reshape(T, H*N)
778
+ out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
779
+ out = out.to(dtype=x.dtype) * g
780
+ out = matmul(out, ow, omx, orx, omy, ory)
781
+
782
+ return x + out, xx[-1,:], s
783
+
784
+ ########################################################################################################
785
+
786
+ @MyFunction
787
+ def att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
788
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
789
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
790
+ kx = xx * k_mix + sx * (1 - k_mix)
791
+ vx = xx * v_mix + sx * (1 - v_mix)
792
+ rx = xx * r_mix + sx * (1 - r_mix)
793
+ gx = xx * g_mix + sx * (1 - g_mix)
794
+
795
+ H = t_decay.shape[0]
796
+ N = x.shape[-1] // H
797
+ T = x.shape[0]
798
+
799
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
800
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
801
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
802
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
803
+
804
+ out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
805
+ for t in range(T):
806
+ rt = r[:,t:t+1,:]
807
+ kt = k[:,:,t:t+1]
808
+ vt = v[:,t:t+1,:]
809
+ at = matmul(kt, vt)
810
+ out[t] = (rt @ (t_first * at + s)).squeeze(1)
811
+ s = at + t_decay * s
812
+
813
+ out = out.reshape(T, H*N)
814
+ out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
815
+ out = out.to(dtype=x.dtype) * g
816
+ out = matmul(out, ow, omx, orx, omy, ory)
817
+
818
+ return x + out, xx[-1,:], s
819
+
820
+ ########################################################################################################
821
+
822
+ @MyFunction
823
+ def att_one_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
824
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
825
+
826
+ sx = sx - xx
827
+ xxx = xx + sx * x_maa
828
+ xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
829
+ xxx = torch.bmm(xxx, tm_w2).view(5, -1)
830
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
831
+
832
+ wx = xx + sx * (w_maa + mw)
833
+ kx = xx + sx * (k_maa + mk)
834
+ vx = xx + sx * (v_maa + mv)
835
+ rx = xx + sx * (r_maa + mr)
836
+ gx = xx + sx * (g_maa + mg)
837
+
838
+ H = t_decay.shape[0]
839
+ N = x.shape[-1] // H
840
+
841
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
842
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
843
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
844
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
845
+
846
+ w = t_decay + (torch.tanh(wx @ td_w1) @ td_w2).float().view(H, N, 1)
847
+ w = torch.exp(-torch.exp(w.float()))
848
+
849
+ a = matmul(k, v)
850
+ out = r @ (t_first * a + s)
851
+ s = a + w * s
852
+
853
+ out = out.flatten()
854
+ out = F.group_norm(out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5).squeeze(0)
855
+ out = out.to(dtype=x.dtype) * g
856
+ out = matmul(out, ow, omx, orx, omy, ory)
857
+
858
+ return x + out, xx, s
859
+
860
+ @MyFunction
861
+ def att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
862
+ H = t_decay.shape[0]
863
+ N = x.shape[-1] // H
864
+ T = x.shape[0]
865
+
866
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
867
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
868
+ xxx = xx + sx * x_maa
869
+ xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
870
+ xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
871
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
872
+
873
+ wx = xx + sx * (w_maa + mw)
874
+ kx = xx + sx * (k_maa + mk)
875
+ vx = xx + sx * (v_maa + mv)
876
+ rx = xx + sx * (r_maa + mr)
877
+ gx = xx + sx * (g_maa + mg)
878
+
879
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
880
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(T, H, N).permute(1, 2, 0)
881
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(T, H, N).transpose(0, 1)
882
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
883
+
884
+ w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
885
+ w = torch.exp(-torch.exp(w.float()))
886
+ out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
887
+ for t in range(T):
888
+ rt = r[:,t:t+1,:]
889
+ kt = k[:,:,t:t+1]
890
+ vt = v[:,t:t+1,:]
891
+ at = matmul(kt, vt)
892
+ out[t] = (rt @ (t_first * at + s)).squeeze(1)
893
+ s = at + w[t] * s
894
+
895
+ out = out.reshape(T, H*N)
896
+ out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
897
+ out = out.to(dtype=x.dtype) * g
898
+ out = matmul(out, ow, omx, orx, omy, ory)
899
+
900
+ return x + out, xx[-1,:], s
901
+
902
+ ########################################################################################################
903
+
904
+ if os.environ["RWKV_CUDA_ON"] == '1':
905
+ @MyFunction
906
+ def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
907
+ T, C = x.shape
908
+ xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
909
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
910
+ kx = xx * k_mix + sx * (1 - k_mix)
911
+ vx = xx * v_mix + sx * (1 - v_mix)
912
+ rx = xx * r_mix + sx * (1 - r_mix)
913
+
914
+ r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
915
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
916
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
917
+ y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
918
+
919
+ out = matmul(r * y.to(x.dtype), ow, omx, orx, omy, ory)
920
+ return x + out, xx[-1,:], aa, bb, pp
921
+
922
+ @MyFunction
923
+ def v5_2_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
924
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
925
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
926
+ kx = xx * k_mix + sx * (1 - k_mix)
927
+ vx = xx * v_mix + sx * (1 - v_mix)
928
+ rx = xx * r_mix + sx * (1 - r_mix)
929
+ gx = xx * g_mix + sx * (1 - g_mix)
930
+
931
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
932
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
933
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
934
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
935
+
936
+ return r, k, v, g, xx[-1,:], s.transpose(-1,-2).contiguous()
937
+
938
+ @MyFunction
939
+ def v5_2_after(self, t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory):
940
+ H = t_decay.shape[0]
941
+ N = x.shape[-1] // H
942
+ T = x.shape[0]
943
+
944
+ s = s.transpose(-1,-2)
945
+ out = out.reshape(T, H*N)
946
+ out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps = 64e-5)
947
+ out = out.to(dtype=x.dtype) * g
948
+ out = matmul(out, ow, omx, orx, omy, ory)
949
+
950
+ return x + out, xxx, s
951
+
952
+ def cuda_att_seq_v5_2(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
953
+ H = t_decay.shape[0]
954
+ N = x.shape[-1] // H
955
+ T = x.shape[0]
956
+
957
+ r, k, v, g, xxx, ss = self.v5_2_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, k_mix, v_mix, r_mix, g_mix, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
958
+
959
+ out, s = self.RUN_RWKV_5(1, T, self.args.n_att, H, ss, r, k, v, w=t_decay, u=t_first)
960
+
961
+ return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
962
+
963
+ @MyFunction
964
+ def v6_0_before(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
965
+ H = t_decay.shape[0]
966
+ N = x.shape[-1] // H
967
+ T = x.shape[0]
968
+
969
+ xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
970
+ sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) - xx
971
+ xxx = xx + sx * x_maa
972
+ xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
973
+ xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
974
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
975
+
976
+ wx = xx + sx * (w_maa + mw)
977
+ kx = xx + sx * (k_maa + mk)
978
+ vx = xx + sx * (v_maa + mv)
979
+ rx = xx + sx * (r_maa + mr)
980
+ gx = xx + sx * (g_maa + mg)
981
+
982
+ r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
983
+ k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
984
+ v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
985
+ g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
986
+
987
+ w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(T, H, N, 1)
988
+
989
+ return r, k, v, g, w, xx[-1,:], s.transpose(-1,-2).contiguous()
990
+
991
+ def cuda_att_seq_v6_0(self, x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory):
992
+ H = t_decay.shape[0]
993
+ N = x.shape[-1] // H
994
+ T = x.shape[0]
995
+
996
+ r, k, v, g, w, xxx, ss = self.v6_0_before(x, sx, s, ln_w, ln_b, lx_w, lx_b, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, t_decay, t_first, kw, vw, rw, gw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, gmx, grx, gmy, gry, omx, orx, omy, ory)
997
+
998
+ out, s = self.RUN_RWKV_6(1, T, self.args.n_att, H, ss, r, k, v, w=w, u=t_first)
999
+ return self.v5_2_after(t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory)
1000
+
1001
+ ########################################################################################################
1002
+
1003
+ def forward(self, tokens=None, state=None, full_output=False, embs=None):
1004
+ with torch.no_grad():
1005
+ w = self.w
1006
+ args = self.args
1007
+
1008
+ if state == None:
1009
+ if self.version == 4:
1010
+ state = [None] * args.n_layer * 5
1011
+ for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
1012
+ dd = self.strategy[i]
1013
+ dev = dd.device
1014
+ atype = dd.atype
1015
+ state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
1016
+ state[i*5+1] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
1017
+ state[i*5+2] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous()
1018
+ state[i*5+3] = torch.zeros(args.n_att, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
1019
+ state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
1020
+ elif int(self.version) in [5,6]:
1021
+ state = [None] * args.n_layer * 3
1022
+ for i in range(args.n_layer): # state: 0=att_xx 1=att_kv 2=ffn_xx
1023
+ dd = self.strategy[i]
1024
+ dev = dd.device
1025
+ atype = dd.atype
1026
+ state[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
1027
+ state[i*3+1] = torch.zeros((args.n_head, args.n_att//args.n_head, args.n_att//args.n_head), dtype=torch.float, requires_grad=False, device=dev).contiguous()
1028
+ state[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
1029
+
1030
+ if embs is None:
1031
+ seq_mode = len(tokens) > 1
1032
+ x = w['emb.weight'][tokens if seq_mode else tokens[0]]
1033
+ else:
1034
+ x = embs
1035
+ seq_mode = True
1036
+
1037
+ for i in range(args.n_layer):
1038
+ bbb = f'blocks.{i}.'
1039
+ att = f'blocks.{i}.att.'
1040
+ ffn = f'blocks.{i}.ffn.'
1041
+ dd = self.strategy[i]
1042
+ dev = dd.device
1043
+ atype = dd.atype
1044
+ wtype = dd.wtype
1045
+ if seq_mode:
1046
+ cuda_applicable = os.environ["RWKV_CUDA_ON"] == '1' and 'cuda' in str(dev)
1047
+ if cuda_applicable:
1048
+ ATT = self.cuda_att_seq
1049
+ else:
1050
+ ATT = self.att_seq
1051
+ if self.version == 5:
1052
+ ATT = self.att_seq_v5
1053
+ elif self.version == 5.1:
1054
+ ATT = self.att_seq_v5_1
1055
+ elif self.version == 5.2:
1056
+ ATT = self.att_seq_v5_2
1057
+ if cuda_applicable:
1058
+ ATT = self.cuda_att_seq_v5_2
1059
+ elif self.version == 6.0:
1060
+ ATT = self.att_seq_v6_0
1061
+ if cuda_applicable:
1062
+ ATT = self.cuda_att_seq_v6_0
1063
+ FFN = self.ffn_seq
1064
+ if self.version >= 6.0:
1065
+ FFN = self.ffn_seq_v6
1066
+ else:
1067
+ ATT = self.att_one
1068
+ if self.version == 5:
1069
+ ATT = self.att_one_v5
1070
+ elif self.version == 5.1:
1071
+ ATT = self.att_one_v5_1
1072
+ elif self.version == 5.2:
1073
+ ATT = self.att_one_v5_1 # same as v5.1
1074
+ elif self.version == 6.0:
1075
+ ATT = self.att_one_v6_0
1076
+ FFN = self.ffn_one
1077
+ if self.version >= 6.0:
1078
+ FFN = self.ffn_one_v6
1079
+
1080
+ x = x.to(dtype=atype, device=dev)
1081
+
1082
+ kw = w[f'{att}key.weight']
1083
+ vw = w[f'{att}value.weight']
1084
+ rw = w[f'{att}receptance.weight']
1085
+ ow = w[f'{att}output.weight']
1086
+ if dd.stream:
1087
+ kw = kw.to(device=dev, non_blocking=True)
1088
+ vw = vw.to(device=dev, non_blocking=True)
1089
+ rw = rw.to(device=dev, non_blocking=True)
1090
+ ow = ow.to(device=dev, non_blocking=True)
1091
+ kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
1092
+ krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
1093
+ kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
1094
+ kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
1095
+ vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
1096
+ vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
1097
+ vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
1098
+ vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
1099
+ rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
1100
+ rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
1101
+ rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
1102
+ rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
1103
+ omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
1104
+ orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
1105
+ omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
1106
+ ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
1107
+ if self.version in [5.1, 5.2, 6.0]:
1108
+ gw = w[f'{att}gate.weight']
1109
+ if dd.stream:
1110
+ gw = gw.to(device=dev, non_blocking=True)
1111
+ gmx = w[f'{att}gate.weight_mx'] if wtype == torch.uint8 else x
1112
+ grx = w[f'{att}gate.weight_rx'] if wtype == torch.uint8 else x
1113
+ gmy = w[f'{att}gate.weight_my'] if wtype == torch.uint8 else x
1114
+ gry = w[f'{att}gate.weight_ry'] if wtype == torch.uint8 else x
1115
+ if self.version == 4:
1116
+ x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
1117
+ x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
1118
+ w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
1119
+ w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
1120
+ w[f'{att}time_decay'], w[f'{att}time_first'],
1121
+ kw, vw, rw, ow,
1122
+ kmx, krx, kmy, kry,
1123
+ vmx, vrx, vmy, vry,
1124
+ rmx, rrx, rmy, rry,
1125
+ omx, orx, omy, ory,
1126
+ )
1127
+ elif self.version == 5:
1128
+ x, state[i*3+0], state[i*3+1] = ATT(
1129
+ x, state[i*3+0], state[i*3+1],
1130
+ w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
1131
+ w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
1132
+ w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
1133
+ w[f'{att}time_decay'], w[f'{att}time_first'],
1134
+ kw, vw, rw, ow,
1135
+ kmx, krx, kmy, kry,
1136
+ vmx, vrx, vmy, vry,
1137
+ rmx, rrx, rmy, rry,
1138
+ omx, orx, omy, ory,
1139
+ )
1140
+ elif self.version in [5.1, 5.2]:
1141
+ x, state[i*3+0], state[i*3+1] = ATT(
1142
+ x, state[i*3+0], state[i*3+1],
1143
+ w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
1144
+ w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
1145
+ w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'], w[f'{att}time_mix_g'],
1146
+ w[f'{att}time_decay'], w[f'{att}time_first'],
1147
+ kw, vw, rw, gw, ow,
1148
+ kmx, krx, kmy, kry,
1149
+ vmx, vrx, vmy, vry,
1150
+ rmx, rrx, rmy, rry,
1151
+ gmx, grx, gmy, gry,
1152
+ omx, orx, omy, ory,
1153
+ )
1154
+ elif self.version == 6.0:
1155
+ x, state[i*3+0], state[i*3+1] = ATT(
1156
+ x, state[i*3+0], state[i*3+1],
1157
+ w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
1158
+ w[f'{att}ln_x.weight'], w[f'{att}ln_x.bias'],
1159
+ w[f'{att}time_maa_x'], w[f'{att}time_maa_w'], w[f'{att}time_maa_k'], w[f'{att}time_maa_v'], w[f'{att}time_maa_r'], w[f'{att}time_maa_g'],
1160
+ w[f'{att}time_maa_w1'], w[f'{att}time_maa_w2'], w[f'{att}time_decay_w1'], w[f'{att}time_decay_w2'],
1161
+ w[f'{att}time_decay'], w[f'{att}time_first'],
1162
+ kw, vw, rw, gw, ow,
1163
+ kmx, krx, kmy, kry,
1164
+ vmx, vrx, vmy, vry,
1165
+ rmx, rrx, rmy, rry,
1166
+ gmx, grx, gmy, gry,
1167
+ omx, orx, omy, ory,
1168
+ )
1169
+ if dd.stream:
1170
+ del kw, vw, rw, ow
1171
+ if self.version in [5.1, 5.2, 6.0]:
1172
+ del gw
1173
+
1174
+ kw = w[f'{ffn}key.weight']
1175
+ vw = w[f'{ffn}value.weight']
1176
+ rw = w[f'{ffn}receptance.weight']
1177
+ if dd.stream:
1178
+ kw = kw.to(device=dev, non_blocking=True)
1179
+ vw = vw.to(device=dev, non_blocking=True)
1180
+ rw = rw.to(device=dev, non_blocking=True)
1181
+ kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
1182
+ krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
1183
+ kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
1184
+ kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
1185
+ vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
1186
+ vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
1187
+ vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
1188
+ vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
1189
+ rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
1190
+ rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
1191
+ rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
1192
+ rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
1193
+ if self.version == 4:
1194
+ offset = i*5+4
1195
+ elif int(self.version) in [5,6]:
1196
+ offset = i*3+2
1197
+ if self.version < 6.0:
1198
+ x, state[offset] = FFN(
1199
+ x, state[offset],
1200
+ w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
1201
+ w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
1202
+ kw, vw, rw,
1203
+ kmx, krx, kmy, kry,
1204
+ vmx, vrx, vmy, vry,
1205
+ rmx, rrx, rmy, rry,
1206
+ )
1207
+ else:
1208
+ x, state[offset] = FFN(
1209
+ x, state[offset],
1210
+ w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
1211
+ w[f'{ffn}time_maa_k'], w[f'{ffn}time_maa_r'],
1212
+ kw, vw, rw,
1213
+ kmx, krx, kmy, kry,
1214
+ vmx, vrx, vmy, vry,
1215
+ rmx, rrx, rmy, rry,
1216
+ )
1217
+ if dd.stream:
1218
+ del kw, vw, rw
1219
+
1220
+ if self.RESCALE_LAYER > 0:
1221
+ if (i+1) % self.RESCALE_LAYER == 0:
1222
+ x = x / 2
1223
+
1224
+ dd = self.strategy[args.n_layer]
1225
+ x = x[-1,:] if (seq_mode and (not full_output)) else x
1226
+ x = x.to(dtype=dd.atype, device=dd.device)
1227
+
1228
+ x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
1229
+ if w['head.weight'].dtype != torch.uint8:
1230
+ x = x @ w['head.weight']
1231
+ else:
1232
+ if seq_mode and full_output:
1233
+ x = mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
1234
+ else:
1235
+ x = mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
1236
+
1237
+ return x.float(), state
modeling_vision.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPVisionModel
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from dataclasses import dataclass
6
+
7
+ @dataclass
8
+ class VisionEncoderConfig:
9
+ n_embd: int = 2048
10
+ vision_tower_name: str = 'openai/clip-vit-large-patch14-336'
11
+ grid_size: int = -1 # -1: no grid pooling, 0: take cls token, 1: global avg pooling, 2, 3, 4, ...: grid pooling
12
+
13
+ class VisionEncoder(nn.Module):
14
+ def __init__(self, args):
15
+ super().__init__()
16
+ self.args = args
17
+ self.vit = CLIPVisionModel.from_pretrained(args.vision_tower_name)
18
+ self.proj = nn.Linear(self.vit.config.hidden_size, args.n_embd, bias=False)
19
+
20
+ def encode_images(self, images):
21
+ B, N, C, H, W = images.shape
22
+ images = images.view(B*N, C, H, W)
23
+ image_features = self.vit(images).last_hidden_state
24
+ L, D = image_features.shape[1], image_features.shape[2]
25
+ # rerange [B*N, L, D] -> [B, N, L, D]
26
+ image_features = image_features.view(B, N, L, D)[:, 0, :, :]
27
+ image_features = self.grid_pooling(image_features)
28
+ return self.proj(image_features)
29
+
30
+ def grid_pooling(self, image_features):
31
+ if self.args.grid_size == -1: # no grid pooling
32
+ return image_features
33
+ if self.args.grid_size == 0: # take cls token
34
+ return image_features[:, 0:1, :]
35
+ if self.args.grid_size == 1: # global avg pooling
36
+ return image_features.mean(dim=1, keepdim=True)
37
+ cls_features = image_features[:, 0:1, :]
38
+ image_features = image_features[:, 1:, :] #drop cls token
39
+ B, L, D = image_features.shape
40
+ H_or_W = int(L**0.5)
41
+ image_features = image_features.view(B, H_or_W, H_or_W, D)
42
+ grid_stride = H_or_W // self.args.grid_size
43
+ image_features = F.avg_pool2d(image_features.permute(0, 3, 1, 2),
44
+ padding=0,
45
+ kernel_size=grid_stride,
46
+ stride=grid_stride)
47
+ image_features = image_features.permute(0, 2, 3, 1).view(B, -1, D)
48
+ return torch.cat((cls_features, image_features), dim=1)
requirements.txt CHANGED
@@ -1,8 +1,7 @@
1
- gradio==3.28.1
2
  torch
 
3
  ninja
4
  tokenizers
5
- rwkv==0.8.21
6
  pynvml
7
- huggingface_hub
8
- gradio==3.28.1
 
 
1
  torch
2
+ transformers
3
  ninja
4
  tokenizers
5
+ rwkv==0.8.22
6
  pynvml
7
+ huggingface_hub