Bowieee commited on
Commit
1f868cb
·
1 Parent(s): e0f90d0

add models

Browse files
.gitignore CHANGED
@@ -11,3 +11,5 @@ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
 
 
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
+
15
+ .history
.pre-commit-config.yaml DELETED
@@ -1,53 +0,0 @@
1
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- default_language_version:
16
- python: python3
17
-
18
- ci:
19
- autofix_prs: true
20
- autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
- autoupdate_schedule: quarterly
22
-
23
- repos:
24
- - repo: https://github.com/pre-commit/pre-commit-hooks
25
- rev: v4.3.0
26
- hooks:
27
- - id: check-yaml
28
- - id: check-case-conflict
29
- - id: detect-private-key
30
- - id: check-added-large-files
31
- args: ['--maxkb=1000']
32
- - id: requirements-txt-fixer
33
- - id: end-of-file-fixer
34
- - id: trailing-whitespace
35
-
36
- - repo: https://github.com/PyCQA/isort
37
- rev: 5.12.0
38
- hooks:
39
- - id: isort
40
- name: Format imports
41
-
42
- - repo: https://github.com/psf/black
43
- rev: 22.12.0
44
- hooks:
45
- - id: black
46
- name: Format code
47
- additional_dependencies: ['click==8.0.2']
48
-
49
- - repo: https://github.com/charliermarsh/ruff-pre-commit
50
- # Ruff version.
51
- rev: 'v0.0.267'
52
- hooks:
53
- - id: ruff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STRUCT_RES.json ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "deepseek-v2-lite-chat": {
3
+ "BaseARC": 69.01287553648069,
4
+ "BaseOpenbook": 64.60000000000001,
5
+ "📝StructARC": 40.155538694992416,
6
+ "📝StructOpenbook": 41.98437130002368,
7
+ "📝StructMMLU": 40.95659182440028,
8
+ "📝StructAverage": 41.03216727313879,
9
+ "BaseMMLU": 55.7,
10
+ "BaseAverage": 63.10429184549357
11
+ },
12
+ "baichuan2-7b-chat": {
13
+ "BaseARC": 57.596566523605155,
14
+ "BaseOpenbook": 60.8,
15
+ "📝StructARC": 31.39226100151745,
16
+ "📝StructOpenbook": 33.838503433578026,
17
+ "📝StructMMLU": 32.019719285283976,
18
+ "📝StructAverage": 32.41682790679315,
19
+ "BaseMMLU": 52.49,
20
+ "BaseAverage": 56.962188841201716
21
+ },
22
+ "mistral-7b-instruct-v0.3": {
23
+ "BaseARC": 76.39484978540773,
24
+ "BaseOpenbook": 74.4,
25
+ "📝StructARC": 42.640364188163886,
26
+ "📝StructOpenbook": 43.6182808430026,
27
+ "📝StructMMLU": 41.756990621302315,
28
+ "📝StructAverage": 42.67187855082293,
29
+ "BaseMMLU": 61.63,
30
+ "BaseAverage": 70.80828326180257
31
+ },
32
+ "yi-6b-chat": {
33
+ "BaseARC": 59.227467811158796,
34
+ "BaseOpenbook": 55.60000000000001,
35
+ "📝StructARC": 38.39150227617603,
36
+ "📝StructOpenbook": 38.977030547004496,
37
+ "📝StructMMLU": 36.34025031348594,
38
+ "📝StructAverage": 37.90292771222215,
39
+ "BaseMMLU": 58.24,
40
+ "BaseAverage": 57.68915593705293
41
+ },
42
+ "yi-1.5-9b-chat": {
43
+ "BaseARC": 85.75107296137338,
44
+ "BaseOpenbook": 83.0,
45
+ "📝StructARC": 57.01820940819423,
46
+ "📝StructOpenbook": 54.53469097797774,
47
+ "📝StructMMLU": 53.431308242228596,
48
+ "📝StructAverage": 54.99473620946685,
49
+ "BaseMMLU": 69.5,
50
+ "BaseAverage": 79.4170243204578
51
+ },
52
+ "llama-2-7b-chat": {
53
+ "BaseARC": 53.648068669527895,
54
+ "BaseOpenbook": 57.99999999999999,
55
+ "📝StructARC": 29.429059180576633,
56
+ "📝StructOpenbook": 33.24650722235378,
57
+ "📝StructMMLU": 27.884038239302765,
58
+ "📝StructAverage": 30.186534880744393,
59
+ "BaseMMLU": 34.1,
60
+ "BaseAverage": 48.5826895565093
61
+ },
62
+ "llama-3-8b-instruct": {
63
+ "BaseARC": 80.68669527896995,
64
+ "BaseOpenbook": 79.60000000000001,
65
+ "📝StructARC": 56.74317147192717,
66
+ "📝StructOpenbook": 57.06843476201753,
67
+ "📝StructMMLU": 54.63728961686302,
68
+ "📝StructAverage": 56.149631950269246,
69
+ "BaseMMLU": 68.4,
70
+ "BaseAverage": 76.22889842632333
71
+ },
72
+ "qwen1.5-7b-chat": {
73
+ "BaseARC": 70.21459227467811,
74
+ "BaseOpenbook": 68.60000000000001,
75
+ "📝StructARC": 40.92374810318665,
76
+ "📝StructOpenbook": 41.439734785697375,
77
+ "📝StructMMLU": 39.75951206275273,
78
+ "📝StructAverage": 40.707664983878914,
79
+ "BaseMMLU": 61.70508772,
80
+ "BaseAverage": 66.83989333155938
81
+ },
82
+ "qwen2-7b-instruct": {
83
+ "BaseARC": 84.29184549356223,
84
+ "BaseOpenbook": 82.39999999999999,
85
+ "📝StructARC": 58.34597875569044,
86
+ "📝StructOpenbook": 57.28155339805825,
87
+ "📝StructMMLU": 56.78738087582798,
88
+ "📝StructAverage": 57.47163767652555,
89
+ "BaseMMLU": 70.5,
90
+ "BaseAverage": 79.06394849785407
91
+ },
92
+ "mistral-7b-v0.3": {
93
+ "BaseARC": 76.65236051502146,
94
+ "BaseOpenbook": 72.8,
95
+ "📝StructARC": 46.936646433990894,
96
+ "📝StructOpenbook": 48.23585129055174,
97
+ "📝StructMMLU": 46.05517926584278,
98
+ "📝StructAverage": 47.075892330128475,
99
+ "BaseMMLU": 60.1,
100
+ "BaseAverage": 69.85078683834048
101
+ },
102
+ "yi-1.5-9b": {
103
+ "BaseARC": 88.41201716738198,
104
+ "BaseOpenbook": 83.0,
105
+ "📝StructARC": 60.60318664643399,
106
+ "📝StructOpenbook": 59.2943405162207,
107
+ "📝StructMMLU": 57.41526232409641,
108
+ "📝StructAverage": 59.10426316225036,
109
+ "BaseMMLU": 69.5,
110
+ "BaseAverage": 80.30400572246066
111
+ },
112
+ "yi-6b": {
113
+ "BaseARC": 77.6824034334764,
114
+ "BaseOpenbook": 73.6,
115
+ "📝StructARC": 46.936646433990894,
116
+ "📝StructOpenbook": 49.51456310679612,
117
+ "📝StructMMLU": 46.21888085492341,
118
+ "📝StructAverage": 47.55669679857014,
119
+ "BaseMMLU": 63.2,
120
+ "BaseAverage": 71.49413447782545
121
+ },
122
+ "deepseek-v2-lite": {
123
+ "BaseARC": 68.24034334763948,
124
+ "BaseOpenbook": 66.4,
125
+ "📝StructARC": 40.73406676783004,
126
+ "📝StructOpenbook": 42.97892493488042,
127
+ "📝StructMMLU": 41.024161265238256,
128
+ "📝StructAverage": 41.579050989316244,
129
+ "BaseMMLU": 58.3,
130
+ "BaseAverage": 64.3134477825465
131
+ },
132
+ "llama-3-8b": {
133
+ "BaseARC": 76.22317596566523,
134
+ "BaseOpenbook": 75.0,
135
+ "📝StructARC": 52.78831562974203,
136
+ "📝StructOpenbook": 53.04286052569264,
137
+ "📝StructMMLU": 51.37044261097523,
138
+ "📝StructAverage": 52.4005395888033,
139
+ "BaseMMLU": 66.6,
140
+ "BaseAverage": 72.60772532188841
141
+ },
142
+ "llama-2-7b": {
143
+ "BaseARC": 48.66952789699571,
144
+ "BaseOpenbook": 43.6,
145
+ "📝StructARC": 29.040212443095598,
146
+ "📝StructOpenbook": 31.730996921619703,
147
+ "📝StructMMLU": 29.187423497033315,
148
+ "📝StructAverage": 29.986210953916203,
149
+ "BaseMMLU": 45.7,
150
+ "BaseAverage": 45.98984263233191
151
+ },
152
+ "qwen2-7b": {
153
+ "BaseARC": 86.18025751072962,
154
+ "BaseOpenbook": 84.2,
155
+ "📝StructARC": 66.17033383915023,
156
+ "📝StructOpenbook": 66.13781671797301,
157
+ "📝StructMMLU": 65.24702121505192,
158
+ "📝StructAverage": 65.85172392405839,
159
+ "BaseMMLU": 70.3,
160
+ "BaseAverage": 80.22675250357655
161
+ },
162
+ "qwen1.5-7b": {
163
+ "BaseARC": 78.54077253218884,
164
+ "BaseOpenbook": 78.8,
165
+ "📝StructARC": 48.501517450682854,
166
+ "📝StructOpenbook": 50.248638408714186,
167
+ "📝StructMMLU": 46.709001366105916,
168
+ "📝StructAverage": 48.48638574183432,
169
+ "BaseMMLU": 61.0,
170
+ "BaseAverage": 72.78025751072961
171
+ },
172
+ "baichuan2-7b-base": {
173
+ "BaseARC": 61.630901287553655,
174
+ "BaseOpenbook": 62.6,
175
+ "📝StructARC": 32.42602427921092,
176
+ "📝StructOpenbook": 37.08264267108691,
177
+ "📝StructMMLU": 34.59571358681649,
178
+ "📝StructAverage": 34.7014601790381,
179
+ "BaseMMLU": 54.16,
180
+ "BaseAverage": 59.46363376251788
181
+ },
182
+ "llama-3-70b": {
183
+ "BaseARC": 92.1030042918455,
184
+ "BaseOpenbook": 89.60000000000001,
185
+ "📝StructARC": 73.12215477996965,
186
+ "📝StructOpenbook": 72.6024153445418,
187
+ "📝StructMMLU": 70.85211858440155,
188
+ "📝StructAverage": 72.19222956963766,
189
+ "BaseMMLU": 79.5,
190
+ "BaseAverage": 87.06766809728184
191
+ },
192
+ "qwen2-72b": {
193
+ "BaseARC": 95.79399141630901,
194
+ "BaseOpenbook": 96.39999999999999,
195
+ "📝StructARC": 79.10660091047042,
196
+ "📝StructOpenbook": 78.4986976083353,
197
+ "📝StructMMLU": 78.57972263190929,
198
+ "📝StructAverage": 78.72834038357168,
199
+ "BaseMMLU": 84.2,
200
+ "BaseAverage": 92.131330472103
201
+ },
202
+ "yi-1.5-34b": {
203
+ "BaseARC": 92.1030042918455,
204
+ "BaseOpenbook": 83.6,
205
+ "📝StructARC": 64.37784522003035,
206
+ "📝StructOpenbook": 63.76983187307601,
207
+ "📝StructMMLU": 63.296635991674755,
208
+ "📝StructAverage": 63.81477102826037,
209
+ "BaseMMLU": 77.1,
210
+ "BaseAverage": 84.26766809728183
211
+ },
212
+ "mixtral-8x7b-v0.1": {
213
+ "BaseARC": 84.0343347639485,
214
+ "BaseOpenbook": 77.8,
215
+ "📝StructARC": 62.3103186646434,
216
+ "📝StructOpenbook": 62.32536111768885,
217
+ "📝StructMMLU": 60.46643846946602,
218
+ "📝StructAverage": 61.70070608393275,
219
+ "BaseMMLU": 70.6,
220
+ "BaseAverage": 77.47811158798282
221
+ }
222
+ }
app.py CHANGED
@@ -1,204 +1,137 @@
 
 
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
  AutoEvalColumn,
22
- ModelType,
23
  fields,
24
- WeightType,
25
- Precision
26
  )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  demo = gr.Blocks(css=custom_css)
93
  with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
 
 
 
 
 
 
 
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
  )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
  )
158
 
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
  )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
  )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
-
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
-
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ import json
2
+
3
  import gradio as gr
 
4
  import pandas as pd
 
 
5
 
6
+ from css_html import custom_css
7
+ from text_content import ABOUT_TEXT, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, ACKNOWLEDGEMENT_TEXT, NOTES_TEXT, HEAD_TEXT
8
+ from utils import (
 
 
 
 
 
 
 
 
 
 
 
9
  AutoEvalColumn,
 
10
  fields,
 
 
11
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ result_path = './STRUCT_RES.json'
14
+ with open(result_path, 'r') as f:
15
+ data = json.load(f)
16
+
17
+ rows = []
18
+ for model in data:
19
+ row = {"model": model}
20
+ for key in data[model]:
21
+ print(key)
22
+ row[key] = round(data[model][key], 2)
23
+ rows.append(row)
24
+
25
+ df = pd.DataFrame(rows)
26
+ df = df.sort_values(by='📝StructAverage', ascending=False)
27
+
28
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
29
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
30
+
31
+ COLS_LITE = [
32
+ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
33
+ ]
34
+
35
+ TYPES_LITE = [
36
+ c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
37
+ ]
38
+
39
+ def select_columns(df, columns):
40
+ always_here_cols = [
41
+ AutoEvalColumn.model.name,
42
+ ]
43
+ # We use COLS to maintain sorting
44
+ filtered_df = df[
45
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns]
46
+ ]
47
+ return filtered_df
48
 
49
  demo = gr.Blocks(css=custom_css)
50
  with demo:
51
+ with gr.Column():
52
+ gr.Markdown(
53
+ """<div style="text-align: center;"><h1> 🏅 StructEval Leaderboard</h1></div>\
54
+ <br>\
55
+ """,
56
+ elem_classes="markdown-text",
57
+ )
58
+
59
+ gr.Markdown(HEAD_TEXT, elem_classes="markdown-text")
60
 
61
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
62
+ with gr.Column():
63
+ with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
64
+ with gr.TabItem("🔍 Evaluation Table", id=0):
65
+ with gr.Column():
66
+ with gr.Accordion("⏬ Hidden Columns", open=False):
67
+ shown_columns = gr.CheckboxGroup(
68
+ choices=[
69
+ c
70
+ for c in COLS
71
+ if c
72
+ not in [
73
+ AutoEvalColumn.model.name,
74
+ ]
75
+ ],
76
+ value=[
77
+ c
78
+ for c in COLS_LITE
79
+ if c
80
+ not in [
81
+ AutoEvalColumn.model.name,
82
+ ]
83
+ ],
84
+ label="",
85
+ elem_id="column-select",
86
+ interactive=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  )
88
+
89
+ leaderboard_df = gr.components.Dataframe(
90
+ value=df[
91
+ [
92
+ AutoEvalColumn.model.name,
93
+ ]
94
+ + shown_columns.value
95
+ ],
96
+ headers=COLS,
97
+ datatype=TYPES,
98
+ elem_id="leaderboard-table",
99
+ interactive=False,
 
100
  )
101
 
102
+ hidden_leaderboard_df = gr.components.Dataframe(
103
+ value=df,
104
+ headers=COLS,
105
+ datatype=["str" for _ in range(len(COLS))],
106
+ visible=False,
 
 
107
  )
108
+
109
+ shown_columns.change(
110
+ select_columns,
111
+ [hidden_leaderboard_df, shown_columns],
112
+ leaderboard_df,
 
113
  )
114
+
115
+
116
+ with gr.TabItem("📝 About", id=1):
117
+ gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
118
+
119
+ with gr.Row():
120
+ with gr.Accordion("📒 Notes"):
121
+ gr.Markdown(NOTES_TEXT, elem_classes="markdown-text")
122
+
123
+ with gr.Row():
124
+ with gr.Accordion("📜 Citation", open=False):
125
+ citation_button = gr.Textbox(
126
+ value=CITATION_BUTTON_TEXT,
127
+ label=CITATION_BUTTON_LABEL,
128
+ lines=10,
129
+ elem_id="citation-button",
130
+ show_copy_button=True,
131
+ )
132
+
133
+ with gr.Row():
134
+ with gr.Accordion("🙏 Acknowledgement", open=False):
135
+ gr.Markdown(ACKNOWLEDGEMENT_TEXT)
136
+
137
+ demo.launch()
 
 
 
 
 
 
 
src/display/css_html_js.py → css_html.py RENAMED
@@ -1,34 +1,32 @@
1
  custom_css = """
2
-
 
 
 
 
 
3
  .markdown-text {
4
  font-size: 16px !important;
5
  }
6
-
7
  #models-to-add-text {
8
  font-size: 18px !important;
9
  }
10
-
11
  #citation-button span {
12
  font-size: 16px !important;
13
  }
14
-
15
  #citation-button textarea {
16
  font-size: 16px !important;
17
  }
18
-
19
  #citation-button > label > button {
20
  margin: 6px;
21
  transform: scale(1.3);
22
  }
23
-
24
  #leaderboard-table {
25
  margin-top: 15px
26
  }
27
-
28
  #leaderboard-table-lite {
29
  margin-top: 15px
30
  }
31
-
32
  #search-bar-table-box > div:first-child {
33
  background: none;
34
  border: none;
@@ -37,7 +35,11 @@ custom_css = """
37
  #search-bar {
38
  padding: 0px;
39
  }
40
-
 
 
 
 
41
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
  table td:first-child,
43
  table th:first-child {
@@ -45,11 +47,9 @@ table th:first-child {
45
  overflow: auto;
46
  white-space: nowrap;
47
  }
48
-
49
  .tab-buttons button {
50
  font-size: 20px;
51
  }
52
-
53
  #scale-logo {
54
  border-style: none !important;
55
  box-shadow: none;
@@ -58,48 +58,7 @@ table th:first-child {
58
  margin-right: auto;
59
  max-width: 600px;
60
  }
61
-
62
  #scale-logo .download {
63
  display: none;
64
  }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
1
  custom_css = """
2
+ #changelog-text {
3
+ font-size: 16px !important;
4
+ }
5
+ #changelog-text h2 {
6
+ font-size: 18px !important;
7
+ }
8
  .markdown-text {
9
  font-size: 16px !important;
10
  }
 
11
  #models-to-add-text {
12
  font-size: 18px !important;
13
  }
 
14
  #citation-button span {
15
  font-size: 16px !important;
16
  }
 
17
  #citation-button textarea {
18
  font-size: 16px !important;
19
  }
 
20
  #citation-button > label > button {
21
  margin: 6px;
22
  transform: scale(1.3);
23
  }
 
24
  #leaderboard-table {
25
  margin-top: 15px
26
  }
 
27
  #leaderboard-table-lite {
28
  margin-top: 15px
29
  }
 
30
  #search-bar-table-box > div:first-child {
31
  background: none;
32
  border: none;
 
35
  #search-bar {
36
  padding: 0px;
37
  }
38
+ /* Hides the final AutoEvalColumn */
39
+ #llm-benchmark-tab-table table td:last-child,
40
+ #llm-benchmark-tab-table table th:last-child {
41
+ display: none;
42
+ }
43
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
44
  table td:first-child,
45
  table th:first-child {
 
47
  overflow: auto;
48
  white-space: nowrap;
49
  }
 
50
  .tab-buttons button {
51
  font-size: 20px;
52
  }
 
53
  #scale-logo {
54
  border-style: none !important;
55
  box-shadow: none;
 
58
  margin-right: auto;
59
  max-width: 600px;
60
  }
 
61
  #scale-logo .download {
62
  display: none;
63
  }
64
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml DELETED
@@ -1,13 +0,0 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text_content.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HEAD_TEXT = """
2
+ This is the official leaderboard for 🏅StructEval benchmark. Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a **structured assessment across multiple cognitive levels and critical concepts**, and therefore offers a comprehensive, robust and consistent evaluation for LLMs.
3
+
4
+ Please refer to 🐱[StructEval repository](https://github.com/c-box/StructEval) for model evaluation and 📖[our paper]() for experimental analysis.
5
+
6
+ 🚀 **_Latest News_**
7
+ * [2024.8.2] We released the first version of StructEval leaderboard, which includes 21 open-sourced language models, more datasets and models as comming soon🔥🔥🔥.
8
+
9
+ * [2024.7.31] We regenerated the StructEval Benchmark based on the latest [Wikipedia](https://www.wikipedia.org/) pages (20240601) using [GPT-4o-mini](https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/) model, which could minimize the impact of data contamination🔥🔥🔥.
10
+ """
11
+
12
+ ABOUT_TEXT = """# What is StructEval?
13
+ Evaluation is the baton for the development of large language models.
14
+ Current evaluations typically employ *a single-item assessment paradigm* for each atomic test objective, which struggles to discern whether a model genuinely possesses the required capabilities or merely memorizes/guesses the answers to specific questions.
15
+ To this end, we propose a novel evaluation framework referred to as ***StructEval***.
16
+ Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a **structured assessment across multiple cognitive levels and critical concepts**, and therefore offers a comprehensive, robust and consistent evaluation for LLMs.
17
+ Experiments demonstrate that **StructEval serves as a reliable tool for resisting the risk of data contamination and reducing the interference of potential biases**, thereby providing more reliable and consistent conclusions regarding model capabilities.
18
+ Our framework also sheds light on the design of future principled and trustworthy LLM evaluation protocols.
19
+
20
+ # How to evaluate?
21
+ Our 🐱[repo](https://github.com/c-box/StructEval) provides easy-to-use scripts for both evaluating LLMs on existing StructEval benchmarks and generating new benchmarks based on StructEval framework.
22
+
23
+ # Contact
24
+ If you have any questions, feel free to reach out to us at [[email protected]](mailto:[email protected]).
25
+ """
26
+
27
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
28
+
29
+ CITATION_BUTTON_TEXT = r"""
30
+ comming soon
31
+ """
32
+
33
+ ACKNOWLEDGEMENT_TEXT = """
34
+ Inspired from the [🤗 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
35
+ """
36
+
37
+
38
+ NOTES_TEXT = """
39
+ * On most models on base MMLU, we collected the results for their official technical report. For the models that have not been reported, we use opencompass for evaluation.
40
+ * For other 2 base benchmarks and all 3 structured benchmarks: for chat models, we evaluate them under 0-shot setting; for completion model, we evaluate them under 0-shot setting with ppl.
41
+ """
utils.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+
4
+ @dataclass
5
+ class ColumnContent:
6
+ name: str
7
+ type: str
8
+ displayed_by_default: bool
9
+ hidden: bool = False
10
+
11
+
12
+ def fields(raw_class):
13
+ return [
14
+ v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
15
+ ]
16
+
17
+
18
+ @dataclass(frozen=True)
19
+ class AutoEvalColumn: # Auto evals column
20
+ model = ColumnContent("model", "markdown", True)
21
+ base_average = ColumnContent("BaseAverage", "number", True)
22
+ struct_average = ColumnContent("📝StructAverage", "number", True)
23
+
24
+ base_mmlu = ColumnContent("BaseMMLU", "number", True)
25
+ struct_mmlu = ColumnContent("📝StructMMLU", "number", True)
26
+
27
+ base_arc = ColumnContent("BaseARC", "number", True)
28
+ struct_arc = ColumnContent("📝StructARC", "number", True)
29
+
30
+ base_openbook = ColumnContent("BaseOpenbook", "number", True)
31
+ struct_openbook = ColumnContent("📝StructOpenbook", "number", True)
32
+