Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,24 +14,24 @@ pixtral_client = InferenceClient("mistralai/Pixtral-12B-2409")
|
|
14 |
|
15 |
def enhance_prompt(prompt: str) -> str:
|
16 |
# Use the Paligemma models for prompt enhancement
|
17 |
-
prompt_224 = paligemma224_client(prompt)["generated_text"]
|
18 |
-
prompt_448 = paligemma448_client(prompt)["generated_text"]
|
19 |
-
prompt_896 = paligemma896_client(prompt)["generated_text"]
|
20 |
|
21 |
# Combine all enhanced prompts into a single one
|
22 |
enhanced_prompt = f"Enhanced (224): {prompt_224}\nEnhanced (448): {prompt_448}\nEnhanced (896): {prompt_896}"
|
23 |
|
24 |
# Ultra-enhance the prompt using Paligemma 28b
|
25 |
-
ultra_enhanced_prompt = paligemma28b_client(enhanced_prompt)["generated_text"]
|
26 |
|
27 |
return ultra_enhanced_prompt
|
28 |
|
29 |
|
30 |
def generate_answer(enhanced_prompt: str) -> str:
|
31 |
# Generate answers using the three models: llama, deepseek, and omniparser
|
32 |
-
llama_answer = llama_client(enhanced_prompt)["generated_text"]
|
33 |
-
deepseek_answer = deepseek_client(enhanced_prompt)["generated_text"]
|
34 |
-
omniparser_answer = omniparser_client(enhanced_prompt)["generated_text"]
|
35 |
|
36 |
# Combine answers from all models
|
37 |
combined_answer = f"Llama: {llama_answer}\nDeepseek: {deepseek_answer}\nOmniparser: {omniparser_answer}"
|
@@ -41,7 +41,7 @@ def generate_answer(enhanced_prompt: str) -> str:
|
|
41 |
|
42 |
def enhance_answer(answer: str) -> str:
|
43 |
# Enhance the final answer using Pixtral model
|
44 |
-
enhanced_answer = pixtral_client(answer)["generated_text"]
|
45 |
return enhanced_answer
|
46 |
|
47 |
|
|
|
14 |
|
15 |
def enhance_prompt(prompt: str) -> str:
|
16 |
# Use the Paligemma models for prompt enhancement
|
17 |
+
prompt_224 = paligemma224_client.predict(inputs={"inputs": prompt})["generated_text"]
|
18 |
+
prompt_448 = paligemma448_client.predict(inputs={"inputs": prompt})["generated_text"]
|
19 |
+
prompt_896 = paligemma896_client.predict(inputs={"inputs": prompt})["generated_text"]
|
20 |
|
21 |
# Combine all enhanced prompts into a single one
|
22 |
enhanced_prompt = f"Enhanced (224): {prompt_224}\nEnhanced (448): {prompt_448}\nEnhanced (896): {prompt_896}"
|
23 |
|
24 |
# Ultra-enhance the prompt using Paligemma 28b
|
25 |
+
ultra_enhanced_prompt = paligemma28b_client.predict(inputs={"inputs": enhanced_prompt})["generated_text"]
|
26 |
|
27 |
return ultra_enhanced_prompt
|
28 |
|
29 |
|
30 |
def generate_answer(enhanced_prompt: str) -> str:
|
31 |
# Generate answers using the three models: llama, deepseek, and omniparser
|
32 |
+
llama_answer = llama_client.predict(inputs={"inputs": enhanced_prompt})["generated_text"]
|
33 |
+
deepseek_answer = deepseek_client.predict(inputs={"inputs": enhanced_prompt})["generated_text"]
|
34 |
+
omniparser_answer = omniparser_client.predict(inputs={"inputs": enhanced_prompt})["generated_text"]
|
35 |
|
36 |
# Combine answers from all models
|
37 |
combined_answer = f"Llama: {llama_answer}\nDeepseek: {deepseek_answer}\nOmniparser: {omniparser_answer}"
|
|
|
41 |
|
42 |
def enhance_answer(answer: str) -> str:
|
43 |
# Enhance the final answer using Pixtral model
|
44 |
+
enhanced_answer = pixtral_client.predict(inputs={"inputs": answer})["generated_text"]
|
45 |
return enhanced_answer
|
46 |
|
47 |
|