Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Initialize Inference Clients for all models
|
5 |
+
paligemma224_client = InferenceClient("google/paligemma2-3b-pt-224")
|
6 |
+
paligemma448_client = InferenceClient("google/paligemma2-3b-pt-448")
|
7 |
+
paligemma896_client = InferenceClient("google/paligemma2-3b-pt-896")
|
8 |
+
paligemma28b_client = InferenceClient("google/paligemma2-28b-pt-224")
|
9 |
+
llama_client = InferenceClient("llama/3.3-1b")
|
10 |
+
deepseek_client = InferenceClient("deepseek-ai/deepseek-vl2")
|
11 |
+
omniparser_client = InferenceClient("microsoft/OmniParser")
|
12 |
+
pixtral_client = InferenceClient("mistralai/Pixtral-12B-2409")
|
13 |
|
14 |
|
15 |
+
def enhance_prompt(prompt: str) -> str:
|
16 |
+
# Use the Paligemma models for prompt enhancement
|
17 |
+
prompt_224 = paligemma224_client.infer(prompt)
|
18 |
+
prompt_448 = paligemma448_client.infer(prompt)
|
19 |
+
prompt_896 = paligemma896_client.infer(prompt)
|
20 |
+
|
21 |
+
# Combine all enhanced prompts into a single one
|
22 |
+
enhanced_prompt = f"Enhanced (224): {prompt_224}\nEnhanced (448): {prompt_448}\nEnhanced (896): {prompt_896}"
|
23 |
+
|
24 |
+
# Ultra-enhance the prompt using Paligemma 28b
|
25 |
+
ultra_enhanced_prompt = paligemma28b_client.infer(enhanced_prompt)
|
26 |
+
|
27 |
+
return ultra_enhanced_prompt
|
28 |
+
|
29 |
+
|
30 |
+
def generate_answer(enhanced_prompt: str) -> str:
|
31 |
+
# Generate answers using the three models: llama, deepseek, and omniparser
|
32 |
+
llama_answer = llama_client.infer(enhanced_prompt)
|
33 |
+
deepseek_answer = deepseek_client.infer(enhanced_prompt)
|
34 |
+
omniparser_answer = omniparser_client.infer(enhanced_prompt)
|
35 |
+
|
36 |
+
# Combine answers from all models
|
37 |
+
combined_answer = f"Llama: {llama_answer}\nDeepseek: {deepseek_answer}\nOmniparser: {omniparser_answer}"
|
38 |
+
|
39 |
+
return combined_answer
|
40 |
+
|
41 |
+
|
42 |
+
def enhance_answer(answer: str) -> str:
|
43 |
+
# Enhance the final answer using Pixtral model
|
44 |
+
enhanced_answer = pixtral_client.infer(answer)
|
45 |
+
return enhanced_answer
|
46 |
+
|
47 |
+
|
48 |
+
def process(message: str) -> str:
|
49 |
+
# Step 1: Enhance the prompt using the Paligemma models
|
50 |
+
enhanced_prompt = enhance_prompt(message)
|
51 |
+
|
52 |
+
# Step 2: Generate an answer using the three models
|
53 |
+
answer = generate_answer(enhanced_prompt)
|
54 |
+
|
55 |
+
# Step 3: Enhance the generated answer using Pixtral
|
56 |
+
final_answer = enhance_answer(answer)
|
57 |
+
|
58 |
+
return final_answer
|
59 |
|
60 |
+
|
61 |
+
# Gradio interface setup
|
62 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
63 |
+
# Include system message and history in conversation
|
64 |
+
messages = [{"role": "system", "content": system_message}]
|
65 |
for val in history:
|
66 |
if val[0]:
|
67 |
messages.append({"role": "user", "content": val[0]})
|
68 |
if val[1]:
|
69 |
messages.append({"role": "assistant", "content": val[1]})
|
70 |
+
|
71 |
+
# Get the final enhanced response
|
72 |
+
final_answer = process(message)
|
73 |
+
|
74 |
+
# Yield the response for the Gradio interface
|
75 |
response = ""
|
76 |
+
for token in final_answer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
response += token
|
78 |
yield response
|
79 |
|
80 |
|
81 |
+
# Gradio interface setup
|
|
|
|
|
82 |
demo = gr.ChatInterface(
|
83 |
respond,
|
84 |
additional_inputs=[
|
85 |
+
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
86 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
87 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
88 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
],
|
90 |
)
|
91 |
|
|
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|