BICORP commited on
Commit
a556a7a
·
verified ·
1 Parent(s): 2e9b998

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -38
app.py CHANGED
@@ -1,64 +1,93 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Initialize Inference Clients for all models
5
+ paligemma224_client = InferenceClient("google/paligemma2-3b-pt-224")
6
+ paligemma448_client = InferenceClient("google/paligemma2-3b-pt-448")
7
+ paligemma896_client = InferenceClient("google/paligemma2-3b-pt-896")
8
+ paligemma28b_client = InferenceClient("google/paligemma2-28b-pt-224")
9
+ llama_client = InferenceClient("llama/3.3-1b")
10
+ deepseek_client = InferenceClient("deepseek-ai/deepseek-vl2")
11
+ omniparser_client = InferenceClient("microsoft/OmniParser")
12
+ pixtral_client = InferenceClient("mistralai/Pixtral-12B-2409")
13
 
14
 
15
+ def enhance_prompt(prompt: str) -> str:
16
+ # Use the Paligemma models for prompt enhancement
17
+ prompt_224 = paligemma224_client.infer(prompt)
18
+ prompt_448 = paligemma448_client.infer(prompt)
19
+ prompt_896 = paligemma896_client.infer(prompt)
20
+
21
+ # Combine all enhanced prompts into a single one
22
+ enhanced_prompt = f"Enhanced (224): {prompt_224}\nEnhanced (448): {prompt_448}\nEnhanced (896): {prompt_896}"
23
+
24
+ # Ultra-enhance the prompt using Paligemma 28b
25
+ ultra_enhanced_prompt = paligemma28b_client.infer(enhanced_prompt)
26
+
27
+ return ultra_enhanced_prompt
28
+
29
+
30
+ def generate_answer(enhanced_prompt: str) -> str:
31
+ # Generate answers using the three models: llama, deepseek, and omniparser
32
+ llama_answer = llama_client.infer(enhanced_prompt)
33
+ deepseek_answer = deepseek_client.infer(enhanced_prompt)
34
+ omniparser_answer = omniparser_client.infer(enhanced_prompt)
35
+
36
+ # Combine answers from all models
37
+ combined_answer = f"Llama: {llama_answer}\nDeepseek: {deepseek_answer}\nOmniparser: {omniparser_answer}"
38
+
39
+ return combined_answer
40
+
41
+
42
+ def enhance_answer(answer: str) -> str:
43
+ # Enhance the final answer using Pixtral model
44
+ enhanced_answer = pixtral_client.infer(answer)
45
+ return enhanced_answer
46
+
47
+
48
+ def process(message: str) -> str:
49
+ # Step 1: Enhance the prompt using the Paligemma models
50
+ enhanced_prompt = enhance_prompt(message)
51
+
52
+ # Step 2: Generate an answer using the three models
53
+ answer = generate_answer(enhanced_prompt)
54
+
55
+ # Step 3: Enhance the generated answer using Pixtral
56
+ final_answer = enhance_answer(answer)
57
+
58
+ return final_answer
59
 
60
+
61
+ # Gradio interface setup
62
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
63
+ # Include system message and history in conversation
64
+ messages = [{"role": "system", "content": system_message}]
65
  for val in history:
66
  if val[0]:
67
  messages.append({"role": "user", "content": val[0]})
68
  if val[1]:
69
  messages.append({"role": "assistant", "content": val[1]})
70
+
71
+ # Get the final enhanced response
72
+ final_answer = process(message)
73
+
74
+ # Yield the response for the Gradio interface
75
  response = ""
76
+ for token in final_answer:
 
 
 
 
 
 
 
 
 
77
  response += token
78
  yield response
79
 
80
 
81
+ # Gradio interface setup
 
 
82
  demo = gr.ChatInterface(
83
  respond,
84
  additional_inputs=[
85
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
86
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
87
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
88
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
89
  ],
90
  )
91
 
 
92
  if __name__ == "__main__":
93
  demo.launch()