Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,104 Bytes
90ee73b f3a1f2e 337bc14 90ee73b f3a1f2e 90ee73b f3a1f2e 90ee73b 337bc14 5114719 1514a70 5114719 90ee73b f3a1f2e 87d5fe9 f3a1f2e 90ee73b 337bc14 1514a70 337bc14 87d5fe9 90ee73b 24e347a 90ee73b 87d5fe9 337bc14 87d5fe9 337bc14 f3a1f2e 337bc14 27f6e5d 337bc14 27f6e5d 337bc14 1514a70 337bc14 f3a1f2e 87d5fe9 7096730 87d5fe9 7096730 13600b0 87d5fe9 90ee73b 337bc14 90ee73b 337bc14 90ee73b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import torch
import os
import spaces
import uuid
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
# Constants
bases = {
"ToonYou": "frankjoshua/toonyou_beta6",
"epiCRealism": "emilianJR/epiCRealism"
}
step_loaded = None
base_loaded = "ToonYou"
motion_loaded = None
# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
raise NotImplementedError("No GPU detected!")
device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
# Function
@spaces.GPU(enable_queue=True)
def generate_image(prompt, base, motion, step):
global step_loaded
global base_loaded
global motion_loaded
print(prompt, base, step)
if step_loaded != step:
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
step_loaded = step
if base_loaded != base:
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
base_loaded = base
if motion_loaded != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(hf_hub_download("guoyww/animatediff", motion), adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
motion_loaded = motion
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
export_to_video(output.frames[0], path, fps=10)
return path
# Gradio Interface
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"<h1><center>AnimateDiff-Lightning ⚡</center></h1>" +
"<p><center>Lightning-fast text-to-video generation</center></p>" +
"<p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label='Prompt (English)'
)
with gr.Row():
select_base = gr.Dropdown(
label='Base model',
choices=[
"ToonYou",
"epiCRealism",
],
value=base_loaded,
interactive=True
)
select_motion = gr.Dropdown(
label='Motion',
choices=[
("Default", ""),
("Zoom in", "v2_lora_ZoomIn.ckpt"),
("Zoom out", "v2_lora_ZoomOut.ckpt"),
],
value="",
interactive=True
)
select_step = gr.Dropdown(
label='Inference steps',
choices=[
('1-Step', 1),
('2-Step', 2),
('4-Step', 4),
('8-Step', 8)],
value=4,
interactive=True
)
submit = gr.Button(
scale=1,
variant='primary'
)
video = gr.Video(
label='AnimateDiff-Lightning',
autoplay=True,
height=512,
width=512,
elem_id="video_output"
)
prompt.submit(
fn=generate_image,
inputs=[prompt, select_base, select_motion, select_step],
outputs=video,
)
submit.click(
fn=generate_image,
inputs=[prompt, select_base, select_motion, select_step],
outputs=video,
)
demo.queue().launch() |