|
import datetime |
|
from concurrent.futures import as_completed |
|
from urllib import parse |
|
|
|
import pandas as pd |
|
|
|
import streamlit as st |
|
import wandb |
|
from requests_futures.sessions import FuturesSession |
|
|
|
from dashboard_utils.time_tracker import _log, simple_time_tracker |
|
|
|
URL_QUICKSEARCH = "https://huggingface.co/api/quicksearch?" |
|
WANDB_REPO = "learning-at-home/dalle-hivemind-trainers" |
|
CACHE_TTL = 100 |
|
MAX_DELTA_ACTIVE_RUN_SEC = 60 * 5 |
|
|
|
|
|
@st.cache(ttl=CACHE_TTL, show_spinner=False) |
|
@simple_time_tracker(_log) |
|
def get_new_bubble_data(): |
|
serialized_data_points, latest_timestamp = get_serialized_data_points() |
|
serialized_data = get_serialized_data(serialized_data_points, latest_timestamp) |
|
|
|
usernames = [] |
|
for item in serialized_data["points"][0]: |
|
usernames.append(item["profileId"]) |
|
|
|
profiles = get_profiles(usernames) |
|
|
|
return serialized_data, profiles |
|
|
|
|
|
@st.cache(ttl=CACHE_TTL, show_spinner=False) |
|
@simple_time_tracker(_log) |
|
def get_profiles(usernames): |
|
profiles = [] |
|
with FuturesSession() as session: |
|
futures = [] |
|
for username in usernames: |
|
future = session.get(URL_QUICKSEARCH + parse.urlencode({"type": "user", "q": username})) |
|
future.username = username |
|
futures.append(future) |
|
for future in as_completed(futures): |
|
resp = future.result() |
|
username = future.username |
|
response = resp.json() |
|
avatarUrl = None |
|
if response["users"]: |
|
for user_candidate in response["users"]: |
|
if user_candidate["user"] == username: |
|
avatarUrl = response["users"][0]["avatarUrl"] |
|
break |
|
if not avatarUrl: |
|
avatarUrl = "/avatars/57584cb934354663ac65baa04e6829bf.svg" |
|
|
|
if avatarUrl.startswith("/avatars/"): |
|
avatarUrl = f"https://huggingface.co{avatarUrl}" |
|
|
|
profiles.append( |
|
{"id": username, "name": username, "src": avatarUrl, "url": f"https://huggingface.co/{username}"} |
|
) |
|
return profiles |
|
|
|
|
|
@st.cache(ttl=CACHE_TTL, show_spinner=False) |
|
@simple_time_tracker(_log) |
|
def get_serialized_data_points(): |
|
|
|
api = wandb.Api() |
|
runs = api.runs(WANDB_REPO) |
|
|
|
serialized_data_points = {} |
|
latest_timestamp = None |
|
for run in runs: |
|
run_summary = run.summary._json_dict |
|
run_name = run.name |
|
|
|
if run_name in serialized_data_points: |
|
if "_timestamp" in run_summary and "_step" in run_summary: |
|
timestamp = run_summary["_timestamp"] |
|
serialized_data_points[run_name]["Runs"].append( |
|
{ |
|
"batches": run_summary["_step"], |
|
"runtime": run_summary["_runtime"], |
|
"loss": run_summary["train/loss"], |
|
"velocity": run_summary["_step"] / run_summary["_runtime"], |
|
"date": datetime.datetime.utcfromtimestamp(timestamp), |
|
} |
|
) |
|
if not latest_timestamp or timestamp > latest_timestamp: |
|
latest_timestamp = timestamp |
|
else: |
|
if "_timestamp" in run_summary and "_step" in run_summary: |
|
timestamp = run_summary["_timestamp"] |
|
serialized_data_points[run_name] = { |
|
"profileId": run_name, |
|
"Runs": [ |
|
{ |
|
"batches": run_summary["_step"], |
|
"runtime": run_summary["_runtime"], |
|
"loss": run_summary["train/loss"], |
|
"velocity": run_summary["_step"] / run_summary["_runtime"], |
|
"date": datetime.datetime.utcfromtimestamp(timestamp), |
|
} |
|
], |
|
} |
|
if not latest_timestamp or timestamp > latest_timestamp: |
|
latest_timestamp = timestamp |
|
latest_timestamp = datetime.datetime.utcfromtimestamp(latest_timestamp) |
|
return serialized_data_points, latest_timestamp |
|
|
|
|
|
@st.cache(ttl=CACHE_TTL, show_spinner=False) |
|
@simple_time_tracker(_log) |
|
def get_serialized_data(serialized_data_points, latest_timestamp): |
|
serialized_data_points_v2 = [] |
|
max_velocity = 1 |
|
for run_name, serialized_data_point in serialized_data_points.items(): |
|
activeRuns = [] |
|
loss = 0 |
|
runtime = 0 |
|
batches = 0 |
|
velocity = 0 |
|
for run in serialized_data_point["Runs"]: |
|
if run["date"] == latest_timestamp: |
|
run["date"] = run["date"].isoformat() |
|
activeRuns.append(run) |
|
loss += run["loss"] |
|
velocity += run["velocity"] |
|
loss = loss / len(activeRuns) if activeRuns else 0 |
|
runtime += run["runtime"] |
|
batches += run["batches"] |
|
new_item = { |
|
"date": latest_timestamp.isoformat(), |
|
"profileId": run_name, |
|
"batches": batches, |
|
"runtime": runtime, |
|
"activeRuns": activeRuns, |
|
} |
|
serialized_data_points_v2.append(new_item) |
|
serialized_data = {"points": [serialized_data_points_v2], "maxVelocity": max_velocity} |
|
return serialized_data |
|
|
|
|
|
def get_leaderboard(serialized_data): |
|
data_leaderboard = {"user": [], "runtime": []} |
|
|
|
for user_item in serialized_data["points"][0]: |
|
data_leaderboard["user"].append(user_item["profileId"]) |
|
data_leaderboard["runtime"].append(user_item["runtime"]) |
|
|
|
df = pd.DataFrame(data_leaderboard) |
|
df = df.sort_values("runtime", ascending=False) |
|
df["runtime"] = df["runtime"].apply(lambda x: datetime.timedelta(seconds=x)) |
|
df["runtime"] = df["runtime"].apply(lambda x: str(x)) |
|
|
|
df.reset_index(drop=True, inplace=True) |
|
df.rename(columns={"user": "User", "runtime": "Total time contributed"}, inplace=True) |
|
df["Rank"] = df.index + 1 |
|
df = df.set_index("Rank") |
|
return df |
|
|
|
|
|
def get_global_metrics(serialized_data): |
|
current_time = datetime.datetime.utcnow() |
|
num_contributing_users = len(serialized_data["points"][0]) |
|
num_active_users = 0 |
|
total_runtime = 0 |
|
|
|
for user_item in serialized_data["points"][0]: |
|
for run in user_item["activeRuns"]: |
|
date_run = datetime.datetime.fromisoformat(run["date"]) |
|
delta_time_sec = (current_time - date_run).total_seconds() |
|
if delta_time_sec < MAX_DELTA_ACTIVE_RUN_SEC: |
|
num_active_users += 1 |
|
break |
|
|
|
total_runtime += user_item["runtime"] |
|
|
|
total_runtime = datetime.timedelta(seconds=total_runtime) |
|
return { |
|
"num_contributing_users": num_contributing_users, |
|
"num_active_users": num_active_users, |
|
"total_runtime": total_runtime, |
|
} |
|
|