File size: 9,491 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "99FBiGH7bsfn"
      },
      "source": [
        "# Compiling \u0026 Visualizing Tracr Models\n",
        "\n",
        "This notebook demonstrates how to compile a tracr model and provides some tools visualize the model's residual stream or layer outputs for a given input sequence."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "qm-PM1PEawCx"
      },
      "outputs": [],
      "source": [
        "#@title Imports\n",
        "import jax\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# The default of float16 can lead to discrepancies between outputs of\n",
        "# the compiled model and the RASP program.\n",
        "jax.config.update('jax_default_matmul_precision', 'float32')\n",
        "\n",
        "from tracr.compiler import compiling\n",
        "from tracr.compiler import lib\n",
        "from tracr.rasp import rasp"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "HtOAc_yWawFR"
      },
      "outputs": [],
      "source": [
        "#@title Plotting functions\n",
        "def tidy_label(label, value_width=5):\n",
        "  if ':' in label:\n",
        "    label, value = label.split(':')\n",
        "  else:\n",
        "    value = ''\n",
        "  return label + f\":{value:\u003e{value_width}}\"\n",
        "\n",
        "\n",
        "def add_residual_ticks(model, value_width=5, x=False, y=True):\n",
        "  if y:\n",
        "    plt.yticks(\n",
        "            np.arange(len(model.residual_labels))+0.5, \n",
        "            [tidy_label(l, value_width=value_width)\n",
        "              for l in model.residual_labels], \n",
        "            family='monospace',\n",
        "            fontsize=20,\n",
        "    )\n",
        "  if x:\n",
        "    plt.xticks(\n",
        "            np.arange(len(model.residual_labels))+0.5, \n",
        "            [tidy_label(l, value_width=value_width)\n",
        "              for l in model.residual_labels], \n",
        "            family='monospace',\n",
        "            rotation=90,\n",
        "            fontsize=20,\n",
        "    )\n",
        "\n",
        "\n",
        "def plot_computation_trace(model,\n",
        "                           input_labels,\n",
        "                           residuals_or_outputs,\n",
        "                           add_input_layer=False,\n",
        "                           figsize=(12, 9)):\n",
        "  fig, axes = plt.subplots(nrows=1, ncols=len(residuals_or_outputs), figsize=figsize, sharey=True)\n",
        "  value_width = max(map(len, map(str, input_labels))) + 1\n",
        "\n",
        "  for i, (layer, ax) in enumerate(zip(residuals_or_outputs, axes)):\n",
        "    plt.sca(ax)\n",
        "    plt.pcolormesh(layer[0].T, vmin=0, vmax=1)\n",
        "    if i == 0:\n",
        "      add_residual_ticks(model, value_width=value_width)\n",
        "    plt.xticks(\n",
        "        np.arange(len(input_labels))+0.5,\n",
        "        input_labels,\n",
        "        rotation=90,\n",
        "        fontsize=20,\n",
        "    )\n",
        "    if add_input_layer and i == 0:\n",
        "      title = 'Input'\n",
        "    else:\n",
        "      layer_no = i - 1 if add_input_layer else i\n",
        "      layer_type = 'Attn' if layer_no % 2 == 0 else 'MLP'\n",
        "      title = f'{layer_type} {layer_no // 2 + 1}'\n",
        "    plt.title(title, fontsize=20)\n",
        "\n",
        "\n",
        "def plot_residuals_and_input(model, inputs, figsize=(12, 9)):\n",
        "  \"\"\"Applies model to inputs, and plots the residual stream at each layer.\"\"\"\n",
        "  model_out = assembled_model.apply(inputs)\n",
        "  residuals = np.concatenate([model_out.input_embeddings[None, ...],\n",
        "                              model_out.residuals], axis=0)\n",
        "  plot_computation_trace(\n",
        "      model=model,\n",
        "      input_labels=inputs,\n",
        "      residuals_or_outputs=residuals,\n",
        "      add_input_layer=True,\n",
        "      figsize=figsize)\n",
        "\n",
        "\n",
        "def plot_layer_outputs(model, inputs, figsize=(12, 9)):\n",
        "  \"\"\"Applies model to inputs, and plots the outputs of each layer.\"\"\"\n",
        "  model_out = assembled_model.apply(inputs)\n",
        "  plot_computation_trace(\n",
        "      model=model,\n",
        "      input_labels=inputs,\n",
        "      residuals_or_outputs=model_out.layer_outputs,\n",
        "      add_input_layer=False,\n",
        "      figsize=figsize)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "8hV0nv_ISmhM"
      },
      "outputs": [],
      "source": [
        "#@title Define RASP programs\n",
        "def get_program(program_name, max_seq_len):\n",
        "  \"\"\"Returns RASP program and corresponding token vocabulary.\"\"\"\n",
        "  if program_name == \"length\":\n",
        "    vocab = {\"a\", \"b\", \"c\", \"d\"}\n",
        "    program = lib.make_length()\n",
        "  elif program_name == \"frac_prevs\":\n",
        "    vocab = {\"a\", \"b\", \"c\", \"x\"}\n",
        "    program = lib.make_frac_prevs((rasp.tokens == \"x\").named(\"is_x\"))\n",
        "  elif program_name == \"dyck-2\":\n",
        "    vocab = {\"(\", \")\", \"{\", \"}\"}\n",
        "    program = lib.make_shuffle_dyck(pairs=[\"()\", \"{}\"])\n",
        "  elif program_name == \"dyck-3\":\n",
        "    vocab = {\"(\", \")\", \"{\", \"}\", \"[\", \"]\"}\n",
        "    program = lib.make_shuffle_dyck(pairs=[\"()\", \"{}\", \"[]\"])\n",
        "  elif program_name == \"sort\":\n",
        "    vocab = {1, 2, 3, 4, 5}\n",
        "    program = lib.make_sort(\n",
        "        rasp.tokens, rasp.tokens, max_seq_len=max_seq_len, min_key=1)\n",
        "  elif program_name == \"sort_unique\":\n",
        "    vocab = {1, 2, 3, 4, 5}\n",
        "    program = lib.make_sort_unique(rasp.tokens, rasp.tokens)\n",
        "  elif program_name == \"hist\":\n",
        "    vocab = {\"a\", \"b\", \"c\", \"d\"}\n",
        "    program = lib.make_hist()\n",
        "  elif program_name == \"sort_freq\":\n",
        "    vocab = {\"a\", \"b\", \"c\", \"d\"}\n",
        "    program = lib.make_sort_freq(max_seq_len=max_seq_len)\n",
        "  elif program_name == \"pair_balance\":\n",
        "    vocab = {\"(\", \")\"}\n",
        "    program = lib.make_pair_balance(\n",
        "        sop=rasp.tokens, open_token=\"(\", close_token=\")\")\n",
        "  else:\n",
        "    raise NotImplementedError(f\"Program {program_name} not implemented.\")\n",
        "  return program, vocab"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "L_m_ufaua9ri"
      },
      "outputs": [],
      "source": [
        "#@title: Assemble model\n",
        "program_name = \"sort_unique\"  #@param [\"length\", \"frac_prevs\", \"dyck-2\", \"dyck-3\", \"sort\", \"sort_unique\", \"hist\", \"sort_freq\", \"pair_balance\"]\n",
        "max_seq_len = 5  #@param {label: \"Test\", type: \"integer\"}\n",
        "\n",
        "program, vocab = get_program(program_name=program_name,\n",
        "                             max_seq_len=max_seq_len)\n",
        "\n",
        "print(f\"Compiling...\")\n",
        "print(f\"   Program: {program_name}\")\n",
        "print(f\"   Input vocabulary: {vocab}\")\n",
        "print(f\"   Context size: {max_seq_len}\")\n",
        "\n",
        "assembled_model = compiling.compile_rasp_to_model(\n",
        "      program=program,\n",
        "      vocab=vocab,\n",
        "      max_seq_len=max_seq_len,\n",
        "      causal=False,\n",
        "      compiler_bos=\"bos\",\n",
        "      compiler_pad=\"pad\",\n",
        "      mlp_exactness=100)\n",
        "\n",
        "print(\"Done.\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "wtwiE-JiXF3F"
      },
      "outputs": [],
      "source": [
        "#@title Forward pass\n",
        "assembled_model.apply([\"bos\", 3, 4, 1]).decoded"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RkEkVcEHa2gf"
      },
      "outputs": [],
      "source": [
        "#@title Plot residual stream\n",
        "plot_residuals_and_input(\n",
        "  model=assembled_model,\n",
        "  inputs=[\"bos\", 3, 4, 1],\n",
        "  figsize=(10, 9)\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "8c4LakWHa4ey"
      },
      "outputs": [],
      "source": [
        "#@title Plot layer outputs\n",
        "plot_layer_outputs(\n",
        "  model=assembled_model,\n",
        "  inputs = [\"bos\", 3, 4, 1],\n",
        "  figsize=(8, 9)\n",
        ")"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "private_outputs": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}