Spaces:
Sleeping
Sleeping
File size: 27,603 Bytes
9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RASP program objects.
Every object in the RASP language is a function.
The most important type is S-Op, which is a function list[Value] -> list[Value].
An S-Op represents a state inside the residual stream of the transformer.
Therefore, any RASP program that represents a transformer computation must
define a final S-Op that represents the state of the residual stream at the
end of the computation. In particular, given an S-Op `x`,
`x([1, 2, 3])` represents something like the state of the residual stream
at location `x` when the transformer is fed [1, 2, 3] as input.
A secondary (but still important) type is Selector, which is a function
list[Value] -> list[list[bool]]. Given a Selector `sel`, sel([1, 2, 3])
represents something like an attention matrix in the transformer.
For a full reference on RASP, see https://arxiv.org/abs/2106.06981.
"""
import abc
import collections.abc
import copy
import enum
import functools
import itertools
from typing import (Any, Callable, Generic, Mapping, Optional, Protocol,
Sequence, TypeVar, Union)
from absl import logging
import numpy as np
SelectorValue = list[list[bool]]
NumericValue = Union[int, float]
Value = Union[None, int, float, str, bool]
VT = TypeVar("VT", bound=Value)
RASPExprT = TypeVar("RASPExprT", bound="RASPExpr")
SOpT = TypeVar("SOpT", bound="SOp")
T = TypeVar("T")
_NAME_KEY = "name"
_ENCODING_KEY = "encoding"
# These are run on every expression when it's initialised.
# Add your own annotators to this dict to add custom default annotations.
#
# For example, DEFAULT_ANNOTATORS['foo'] will provide the default value for
# expr.annotations['foo]. The annotator will get called lazily the first time
# that key is accessed.
#
# See the `default_name` annotator for a full example.
DEFAULT_ANNOTATORS: dict[str, "Annotator"] = {}
class Annotator(Protocol):
def __call__(self, expr: "RASPExpr") -> Any:
"""What annotation to add to `expr`."""
class _Annotations(collections.abc.Mapping):
"""Holds the expression's annotations.
It's immutable to the user, but will attempt to generate default values
lazily when missing keys are requested.
"""
def __init__(self, expr, **kwargs: Any):
self._expr = expr
self._inner_dict: dict[str, Any] = {**kwargs}
def __getitem__(self, key: str) -> Any:
if key not in self._inner_dict:
if key not in DEFAULT_ANNOTATORS:
raise KeyError(
f"No annotation exists for key '{key}'. "
f"Available keys: {list(*self.keys(), *DEFAULT_ANNOTATORS.keys())}")
self._inner_dict[key] = DEFAULT_ANNOTATORS[key](self._expr)
return self._inner_dict[key]
def __iter__(self):
return iter(self._inner_dict)
def __len__(self):
return len(self._inner_dict)
class RASPExpr(abc.ABC):
"""A class distinguishing RASP expressions from other objects."""
_ids = itertools.count(1)
def __init__(self):
self._annotations: Mapping[str, Any] = _Annotations(self)
@abc.abstractmethod
def __call__(self,
xs: Sequence[Value]) -> Union[Sequence[Value], SelectorValue]:
"""Evaluates the RASPExpr using the standard evaluator."""
@property
def annotations(self) -> Mapping[str, Any]:
"""The annotations of this expression instance."""
return self._annotations
@annotations.setter
def annotations(self, annotations: Mapping[str, Any]):
self._annotations = _Annotations(self, **annotations)
@property
def name(self) -> str:
"""The name of this expression."""
return self.annotations[_NAME_KEY]
@property
@abc.abstractmethod
def children(self) -> Sequence["RASPExpr"]:
"""Direct dependencies of this expression."""
@functools.cached_property
def unique_id(self):
"""A unique id for every expression instance."""
return next(self._ids)
def copy(self: RASPExprT) -> RASPExprT:
"""Returns a shallow copy of this RASPExpr with a new ID."""
return copy.copy(self)
@property
def label(self) -> str:
return f"{self.name}_{self.unique_id}"
def named(self: RASPExprT, name: str) -> RASPExprT:
"""Convenience method for adding a name."""
return annotate(self, name=name)
def annotated(self: RASPExprT, **annotations) -> RASPExprT:
"""Convenience method for adding annotations."""
return annotate(self, **annotations)
def annotate(expr: RASPExprT, **annotations) -> RASPExprT:
"""Creates a new expr with added annotations."""
new = expr.copy()
# Note that new annotations will overwrite existing ones with matching keys.
new.annotations = {**expr.annotations, **annotations}
return new
### S-Ops.
class SOp(RASPExpr):
"""A Sequence Operation."""
def __call__(self, xs: Sequence[Value]) -> Sequence[Value]:
return evaluate(self, xs) # pytype: disable=bad-return-type
# Allow construction of SOps using numeric operators with constant values.
# Note: if inheriting SOp by a dataclass, make sure to disable eq and order,
# as they will override these.
def __lt__(self, other: Value) -> "SOp":
"""self < other."""
return Map(lambda x: x < other, self)
def __le__(self, other: Value) -> "SOp":
"""self <= other."""
return Map(lambda x: x <= other, self)
def __eq__(self, other: Value) -> "SOp":
"""self == other."""
return Map(lambda x: x == other, self)
def __ne__(self, other: Value) -> "SOp":
"""self != other."""
return Map(lambda x: x != other, self)
def __gt__(self, other: Value) -> "SOp":
"""self > other."""
return Map(lambda x: x > other, self)
def __ge__(self, other: Value) -> "SOp":
"""self >= other."""
return Map(lambda x: x >= other, self)
def __add__(self, other: Union["SOp", Value]) -> "SOp":
"""self + other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x + y, self, other)
return Map(lambda x: x + other, self)
def __radd__(self, other: Union["SOp", Value]) -> "SOp":
"""other + self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x + y, other, self)
return Map(lambda x: other + x, self)
def __sub__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""self - other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x - y, self, other)
return Map(lambda x: x - other, self)
def __rsub__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""other - self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x - y, other, self)
return Map(lambda x: other - x, self)
def __mul__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""self * other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x * y, self, other)
return Map(lambda x: x * other, self)
def __rmul__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""other * self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x * y, other, self)
return Map(lambda x: other * x, self)
def __truediv__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""self / other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x / y, self, other)
return Map(lambda x: x / other, self)
def __rtruediv__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""other / self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x / y, other, self)
return Map(lambda x: other / x, self)
def __invert__(self) -> "SOp":
return Map(lambda x: not x, self)
def __and__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""self & other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x and y, self, other)
return Map(lambda x: x and other, self)
def __or__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""self | other."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x or y, self, other)
return Map(lambda x: x or other, self)
def __rand__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""other & self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x and y, other, self)
return Map(lambda x: other and x, self)
def __ror__(self, other: Union["SOp", NumericValue]) -> "SOp":
"""other | self."""
if isinstance(other, SOp):
return SequenceMap(lambda x, y: x or y, other, self)
return Map(lambda x: x or other, self)
class TokensType(SOp):
"""Primitive SOp returning the original input tokens."""
@property
def children(self) -> Sequence[RASPExpr]:
return []
@property
def label(self) -> str:
return "tokens"
def __repr__(self):
return "tokens"
class IndicesType(SOp):
"""Primitive SOp returning the position index at each token."""
@property
def children(self) -> Sequence[RASPExpr]:
return []
@property
def label(self) -> str:
return "indices"
def __repr__(self):
return "indices"
class LengthType(SOp):
"""Primitive SOp returning the total length of the input."""
@property
def children(self) -> Sequence[RASPExpr]:
return []
@property
def label(self) -> str:
return "length"
def __repr__(self):
return "length"
tokens = TokensType()
indices = IndicesType()
length = LengthType()
class Map(SOp):
"""SOp that evaluates the function elementwise on the input SOp.
Map(lambda x: x + 1, tokens).eval([1, 2, 3]) == [2, 3, 4]
"""
def __init__(self, f: Callable[[Value], Value], inner: SOp):
super().__init__()
self.f = f
self.inner = inner
assert isinstance(self.inner, SOp)
assert callable(self.f) and not isinstance(self.f, RASPExpr)
if isinstance(self.inner, Map):
# Combine the functions into just one.
inner_f = self.inner.f
self.f = lambda t: f(inner_f(t))
self.inner = self.inner.inner
@property
def children(self) -> Sequence[RASPExpr]:
return [self.inner]
class SequenceMap(SOp):
"""SOp that evaluates the function elementwise on the two given SOp's.
SequenceMap(lambda x, y: x - y, length, tokens).eval([1, 2, 3]) == [2, 1, 0]
"""
def __init__(self, f: Callable[[Value, Value], Value], fst: SOp, snd: SOp):
super().__init__()
if fst == snd:
logging.warning("Creating a SequenceMap with both inputs being the same "
"SOp is discouraged. You should use a Map instead.")
self.f = f
self.fst = fst
self.snd = snd
assert isinstance(self.fst, SOp)
assert isinstance(self.snd, SOp)
assert callable(self.f) and not isinstance(self.f, RASPExpr)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.fst, self.snd]
class LinearSequenceMap(SequenceMap):
"""SOp that evaluates a linear function elementwise on the two given SOp's."""
def __init__(self, fst: SOp, snd: SOp, fst_fac: float, snd_fac: float):
super().__init__(fst=fst, snd=snd, f=lambda x, y: fst_fac * x + snd_fac * y)
self.fst_fac = fst_fac
self.snd_fac = snd_fac
class Full(SOp):
"""A SOp evaluating to [fill]*len(input_values)."""
def __init__(self, fill: Value):
super().__init__()
self.fill = fill
@property
def children(self) -> Sequence[RASPExpr]:
return []
def sop_not(sop: SOp) -> SOp:
return Map(lambda t: not t, sop)
class ConstantSOp(SOp, Generic[VT]):
"""A constant S-Op for testing purposes."""
def __init__(self, value: Sequence[VT], check_length: bool = True):
super().__init__()
self.value = value
self.check_length = check_length
@property
def children(self) -> Sequence[RASPExpr]:
return []
### Selectors.
class Predicate(Protocol):
def __call__(self, key: Value, query: Value) -> bool:
"""Applies the predicate."""
class Comparison(enum.Enum):
"""A two-place boolean comparison predicate for use in Select."""
EQ = "=="
LT = "<"
LEQ = "<="
GT = ">"
GEQ = ">="
NEQ = "!="
TRUE = "True"
FALSE = "False"
def __call__(self, key: Value, query: Value) -> bool:
if key is None:
raise ValueError("key is None!")
if query is None:
raise ValueError("query is None!")
return _comparison_table[self](key, query)
_comparison_table = {
Comparison.EQ: lambda key, query: key == query,
Comparison.LT: lambda key, query: key < query,
Comparison.LEQ: lambda key, query: key <= query,
Comparison.GT: lambda key, query: key > query,
Comparison.GEQ: lambda key, query: key >= query,
Comparison.NEQ: lambda key, query: key != query,
Comparison.TRUE: lambda key, query: True,
Comparison.FALSE: lambda key, query: False,
}
class Selector(RASPExpr):
"""RASP Selector. Represents something like an attention head's weights."""
def __call__(self, xs: Sequence[Value]) -> SelectorValue:
return evaluate(self, xs) # pytype: disable=bad-return-type
# Allow construction of Selector combinations using Python logical operators.
def __and__(self, other: "Selector") -> "Selector":
"""self & other."""
return selector_and(self, other)
def __rand__(self, other: "Selector") -> "Selector":
"""other & self."""
return selector_and(other, self)
def __or__(self, other: "Selector") -> "Selector":
"""self | other."""
return selector_or(self, other)
def __ror__(self, other: "Selector") -> "Selector":
"""other | self."""
return selector_or(other, self)
def __invert__(self) -> "Selector":
"""~self."""
return selector_not(self)
class Select(Selector):
"""Primitive that creates a Selector."""
def __init__(self, keys: SOp, queries: SOp, predicate: Predicate):
super().__init__()
self.keys = keys
self.queries = queries
self.predicate = predicate
assert isinstance(self.keys, SOp)
assert isinstance(self.queries, SOp)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.keys, self.queries]
class ConstantSelector(Selector):
"""A constant selector for testing purposes."""
def __init__(self, value: SelectorValue, check_length: bool = True):
super().__init__()
self.value = value
self.check_length = check_length
@property
def children(self) -> Sequence[RASPExpr]:
return []
class SelectorWidth(SOp):
"""SelectorWidth primitive."""
def __init__(self, selector: Selector):
super().__init__()
self.selector = selector
assert isinstance(self.selector, Selector)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.selector]
class SelectorAnd(Selector):
"""Implements elementwise `and` between selectors."""
def __init__(self, fst: Selector, snd: Selector):
super().__init__()
self.fst = fst
self.snd = snd
assert isinstance(self.fst, Selector)
assert isinstance(self.snd, Selector)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.fst, self.snd]
class SelectorOr(Selector):
"""Implements elementwise `or` between selectors."""
def __init__(self, fst: Selector, snd: Selector):
super().__init__()
self.fst = fst
self.snd = snd
assert isinstance(self.fst, Selector)
assert isinstance(self.snd, Selector)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.fst, self.snd]
class SelectorNot(Selector):
"""Implements elementwise `not` on a selector."""
def __init__(self, inner: Selector):
self.inner = inner
super().__init__()
assert isinstance(self.inner, Selector)
@property
def children(self) -> Sequence[RASPExpr]:
return [self.inner]
def selector_not(
inner: Selector,
simplify: bool = True,
) -> Selector:
"""Returns a SelectorNot, or a Select if simplifying is possible."""
if simplify and isinstance(inner, Select):
predicate = lambda k, q: not inner.predicate(k, q)
return Select(inner.keys, inner.queries, predicate=predicate)
return SelectorNot(inner)
def selector_and(
fst: Selector,
snd: Selector,
simplify: bool = True,
) -> Selector:
"""Returns a SelectorAnd, or a Select if simplifying is possible."""
if simplify and isinstance(fst, Select) and isinstance(snd, Select):
simplified = _attempt_simplify(fst, snd, lambda l, r: l and r)
if simplified:
return simplified
return SelectorAnd(fst, snd)
def selector_or(
fst: Selector,
snd: Selector,
simplify: bool = True,
) -> Selector:
"""Returns a SelectorOr, or a Select if simplifying is possible."""
if simplify and isinstance(fst, Select) and isinstance(snd, Select):
simplified = _attempt_simplify(fst, snd, lambda l, r: l or r)
if simplified:
return simplified
return SelectorOr(fst, snd)
def _attempt_simplify(
fst: Select,
snd: Select,
combine: Callable[[bool, bool], bool],
) -> Optional[Select]:
"""Simplifies two Selects if possible.
If two Selects in a compound Selector have matching keys and queries, they can
be simplified into one Select with a compound predicate:
lambda k,q: combine(fst.predicate(k,q), snd.predicate(k,q))
This function returns a Select with this predicate if possible,
and None otherwise.
A Full SOp in a key or query position is a special case that always matches
any SOp in the corresponding position in the other selector. In that case,
we bake in the fill value into the corresponding Select's predicate before
combining. This allows us to use the other SOp as the input to the simplified
Select.
Args:
fst: the first Select.
snd: the second Select.
combine: how to combine the outputs of the individual predicates.
Returns:
A combined Select, if possible.
"""
fst_predicate = fst.predicate
snd_predicate = snd.predicate
common_keys = None
common_queries = None
if isinstance(fst.keys, Full):
common_keys = snd.keys
# We pass the predicate in as a default arg to avoid unintended recursion.
fst_predicate = lambda key, query, p=fst_predicate: p(fst.keys.fill, query)
if isinstance(snd.keys, Full):
common_keys = fst.keys
snd_predicate = lambda key, query, p=snd_predicate: p(snd.keys.fill, query)
if isinstance(fst.queries, Full):
common_queries = snd.queries
fst_predicate = lambda key, query, p=fst_predicate: p(key, fst.queries.fill)
if isinstance(snd.queries, Full):
common_queries = fst.queries
snd_predicate = lambda key, query, p=snd_predicate: p(key, snd.queries.fill)
if fst.keys is snd.keys:
common_keys = fst.keys
if fst.queries is snd.queries:
common_queries = fst.queries
if not common_keys or not common_queries:
return None
def predicate(key, query):
return combine(fst_predicate(key, query), snd_predicate(key, query))
return Select(common_keys, common_queries, predicate=predicate)
class Aggregate(SOp, Generic[VT]):
"""Aggregate primitive."""
def __init__(self,
selector: Selector,
sop: SOp,
default: Optional[VT] = None):
"""Initialises. The default is used where nothing is selected."""
super().__init__()
self.selector = selector
self.sop = sop
self.default = default
assert isinstance(self.selector, Selector)
assert isinstance(self.sop, SOp)
assert (self.default is None or isinstance(self.default,
(str, float, bool, int)))
@property
def children(self) -> Sequence[RASPExpr]:
return [self.selector, self.sop]
### SOp encodings.
class Encoding(enum.Enum):
"""The encoding used by a SOp. Only number-valued SOps support numerical."""
CATEGORICAL = "categorical"
NUMERICAL = "numerical"
def numerical(sop: SOpT) -> SOpT:
return annotate(sop, encoding=Encoding.NUMERICAL)
def categorical(sop: SOpT) -> SOpT:
return annotate(sop, encoding=Encoding.CATEGORICAL)
def get_encoding(sop: SOp) -> Encoding:
return sop.annotations["encoding"]
def is_numerical(sop: SOp) -> bool:
"""Check if the SOp is numerically encoded."""
return get_encoding(sop) == Encoding.NUMERICAL
def is_categorical(sop: SOp) -> bool:
"""Check if the SOp is categorically encoded."""
return get_encoding(sop) == Encoding.CATEGORICAL
def default_encoding(expr: RASPExpr) -> Optional[Encoding]:
"""Adds an 'encoding' annotation, default is Categorical."""
if not isinstance(expr, SOp):
raise TypeError(f"expr {expr} is not a SOp.")
return Encoding.CATEGORICAL
DEFAULT_ANNOTATORS[_ENCODING_KEY] = default_encoding
### naming.
# Subclasses must appear here before superclasses in order for
# the most specific entry to be used.
_default_name_by_class = {
# Primitives
TokensType: "tokens",
IndicesType: "indices",
LengthType: "length",
# SOps
LinearSequenceMap: "linear_sequence_map",
SequenceMap: "sequence_map",
Map: "map",
Full: "full",
ConstantSOp: "constant_sop",
SelectorWidth: "selector_width",
Aggregate: "aggregate",
SOp: "sop",
# Selectors
Select: "select",
SelectorAnd: "selector_and",
SelectorOr: "selector_or",
SelectorNot: "selector_not",
ConstantSelector: "constant_selector",
Selector: "selector",
}
def default_name(expr: RASPExpr) -> dict[str, str]:
for cls, name in _default_name_by_class.items():
if isinstance(expr, cls):
return name
raise NotImplementedError(f"{expr} was not given a default name!")
DEFAULT_ANNOTATORS[_NAME_KEY] = default_name
### evaluation.
class RASPEvaluator(abc.ABC):
"""ABC for RASP evaluators."""
@abc.abstractmethod
def evaluate(self, expr: RASPExpr,
xs: Sequence[Value]) -> Union[Sequence[Value], SelectorValue]:
"""Evaluates the RASP expression on input `xs`."""
class DefaultRASPEvaluator(abc.ABC):
"""Default evaluator for RASP."""
def evaluate(self, expr: RASPExpr,
xs: Sequence[Value]) -> Union[Sequence[Value], SelectorValue]:
"""Evaluates the RASP expression on input `xs`."""
return self._eval_fn_by_expr_type[type(expr)](expr, xs)
def __init__(self):
self._eval_fn_by_expr_type = {
# Primitives
TokensType: self.eval_tokens,
IndicesType: self.eval_indices,
LengthType: self.eval_length,
# SOps
LinearSequenceMap: self.eval_sequence_map,
SequenceMap: self.eval_sequence_map,
Map: self.eval_map,
Full: self.eval_full,
ConstantSOp: self.eval_constant_sop,
SelectorWidth: self.eval_selector_width,
Aggregate: self.eval_aggregate,
SOp: _raise_not_implemented,
# Selectors
Select: self.eval_select,
SelectorAnd: self.eval_selector_and,
SelectorOr: self.eval_selector_or,
SelectorNot: self.eval_selector_not,
ConstantSelector: self.eval_constant_selector,
Selector: _raise_not_implemented,
}
def eval_tokens(self, sop: TokensType,
xs: Sequence[Value]) -> Sequence[Value]:
del sop
return list(xs)
def eval_indices(self, sop: IndicesType,
xs: Sequence[Value]) -> Sequence[Value]:
del sop
return list(range(len(xs)))
def eval_length(self, sop: LengthType, xs: Sequence[Value]) -> Sequence[int]:
del sop
return [len(xs)] * len(xs)
def eval_sequence_map(self, sop: SequenceMap,
xs: Sequence[Value]) -> Sequence[Value]:
fst_values = self.evaluate(sop.fst, xs)
snd_values = self.evaluate(sop.snd, xs)
return [
sop.f(x, y) if None not in [x, y] else None
for x, y in zip(fst_values, snd_values)
]
def eval_map(self, sop: Map, xs: Sequence[Value]) -> Sequence[Value]:
return [
sop.f(x) if x is not None else None
for x in self.evaluate(sop.inner, xs)
]
def eval_full(self, sop: Full, xs: Sequence[Value]) -> Sequence[Value]:
return [sop.fill] * len(xs)
def eval_constant_sop(self, sop: ConstantSOp,
xs: Sequence[Value]) -> Sequence[Value]:
if sop.check_length and (len(xs) != len(sop.value)):
raise ValueError(
f"Constant len {len(sop.value)} doesn't match input len {len(xs)}.")
return sop.value
def eval_selector_width(self, sop: SelectorWidth,
xs: Sequence[Value]) -> Sequence[Value]:
selector_values = self.evaluate(sop.selector, xs)
return [sum(row) for row in selector_values]
def eval_aggregate(self, sop: Aggregate,
xs: Sequence[Value]) -> Sequence[Value]:
selector_value = self.evaluate(sop.selector, xs)
values = self.evaluate(sop.sop, xs)
default = sop.default
return [
_mean(_get_selected(row, values), default) for row in selector_value
]
def eval_select(self, sel: Select, xs: Sequence[Value]) -> SelectorValue:
"""Evaluates a Select on `xs`."""
key_values = self.evaluate(sel.keys, xs)
query_values = self.evaluate(sel.queries, xs)
key_len = len(key_values)
query_len = len(query_values)
out = np.zeros((query_len, key_len), dtype=bool).tolist()
for row, query in enumerate(query_values):
for col, key in enumerate(key_values):
out[row][col] = bool(sel.predicate(key, query))
return out
def eval_constant_selector(self, sel: ConstantSelector,
xs: Sequence[Value]) -> SelectorValue:
if sel.check_length and (len(xs) != len(sel.value)):
raise ValueError(
f"Constant len {len(xs)} doesn't match input len {len(sel.value)}.")
return sel.value
def eval_selector_and(self, sel: SelectorAnd,
xs: Sequence[Value]) -> SelectorValue:
fst_values = self.evaluate(sel.fst, xs)
snd_values = self.evaluate(sel.snd, xs)
return np.logical_and(np.array(fst_values), np.array(snd_values)).tolist()
def eval_selector_or(self, sel: SelectorOr,
xs: Sequence[Value]) -> SelectorValue:
fst_values = self.evaluate(sel.fst, xs)
snd_values = self.evaluate(sel.snd, xs)
return np.logical_or(np.array(fst_values), np.array(snd_values)).tolist()
def eval_selector_not(self, sel: SelectorNot,
xs: Sequence[Value]) -> SelectorValue:
values = self.evaluate(sel.inner, xs)
return np.logical_not(np.array(values)).tolist()
def _get_selected(
selector_row: list[bool],
values: Sequence[VT],
) -> Sequence[VT]:
"""Helper for aggregate. [T T F], [a b c] -> [a b]."""
return [v for s, v in zip(selector_row, values) if s]
def _mean(xs: Sequence[VT], default: VT) -> VT:
"""Takes the mean for numbers and concats for strings."""
if not xs:
return default
exemplar = xs[0]
if isinstance(exemplar, (int, bool)):
return sum(xs) / len(xs)
elif len(xs) == 1:
return exemplar
else:
raise ValueError(f"Unsupported type for aggregation: {xs}")
def _raise_not_implemented(expr: RASPExpr, xs: Sequence[Value]):
raise NotImplementedError(f"Evaluation of {expr} is not defined.")
evaluate = DefaultRASPEvaluator().evaluate
|