File size: 8,918 Bytes
72cfe15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
'''
BOTTOM-UP ENUMERATIVE SYTHESIS FOR RASP

Usage:
python rasp_synthesis.py --examples
'''
import numpy as np
import argparse
import itertools
import time
import ast
import re
from tracr.compiler import compiling
from typing import get_args
import inspect

from abstract_syntax_tree import *
from python_embedded_rasp import *

# PARSE ARGUMENTS
def parse_args():
    '''
    Parse command line arguments.
    '''
    parser = argparse.ArgumentParser(description="Bottom-up enumerative synthesis for RASP.")
    parser.add_argument('--examples', required=True, help="input/output sequence examples for synthesis")
    parser.add_argument('--max_weight', type=int, required=False, default=10, help="Maximum weight of programs to consider before terminating search.")
    args = parser.parse_args()
    return args

# ANALYZE EXAMPLES
def analyze_examples(inputs):
    '''
    Returns a list of unique (input_sequence, output_sequence) tuples of proper python types.
        Ensures each example is only numeric values or only char values.
    Returns useful constants given the input examples. 
    '''
    example_ins = []
    example_outs = []
    try:
        # Safely evaluate the string to a Python object
        examples_lst = ast.literal_eval(inputs)
    except (SyntaxError, ValueError) as e:
        raise argparse.ArgumentTypeError(f"Invalid examples format: {e}")
    
    if not isinstance(examples_lst, list):
        raise ValueError("Input should be a list.")
    for ex in examples_lst:
        try:
            ins, outs = ex[0], ex[1]
        except:
            raise argparse.ArgumentTypeError(f"Invalid examples format.")
        
        def same_legal_type(lst):
            return (all(isinstance(x, int) for x in lst) or
                    all(isinstance(x, float) for x in lst) or
                    all(isinstance(x, bool) for x in lst) or
                    all(isinstance(x, str) for x in lst))
        
        if same_legal_type(ins) and same_legal_type(outs):
            example_ins.append(ins)
            example_outs.append(outs)
            continue
        raise argparse.ArgumentTypeError(f"Each example must have consistent types. Expected inputs to have type {first_in_type} and outputs to have {first_out_type} but instead inputs have types {[type(x) for x in ins]} and outputs have types {[type(x) for x in outs]}")
    
    return example_ins, example_outs
    
# GET VOCABULARY
def get_vocabulary(examples):
    '''
    Returns vocabulary for later compiling the RASP model.
    ''' 
    vocab = []  
    for ex in examples:
        ins, outs = ex[0], ex[1]
        vocab.extend([obj for obj in ins])
    return set(vocab)
    
# CHECK OBSERVATIONAL EQUIVALENCE
def check_obs_equivalence(examples, program_a, program_b):
    try:
        inputs = [example[0] for example in examples]
        a_output = None
        b_output = None
        if program_a not in rasp_consts:
            a_output = [program_a.evaluate(input) for input in inputs]
        if program_b not in rasp_consts:
            b_output = [program_b.evaluate(input) for input in inputs]
    except:
        return True # force the synthesizer to not consider this program

    return a_output == b_output

# CHECK CORRECTNESS
def check_correctness(examples, program):
    '''
    Checks if the programs output matches expected output on all examples.
    '''
    try:
        inputs = [example[0] for example in examples]
        outputs = [example[1] for example in examples]
        program_output = [program.evaluate(input) for input in inputs]
    except:
        return False
    
    print(program.str())
    print(program_output)
    
    # TODO return number that match and return this
    
    return program_output == outputs

# COMPARE TYPE SIGNATURES
def compare_types(list1, list2):
    for idx, type1 in enumerate(list1):
        if idx >= len(list2):
            return False  # The first list is longer than the second list

        type2 = list2[idx]

        # Check if type2 is a Union
        if hasattr(type2, '__origin__') and type2.__origin__ is Union:
            # Extract types from Union
            types_in_union2 = get_args(type2)
            # Check if type1 is a Union
            if hasattr(type1, '__origin__') and type1.__origin__ is Union:
                types_in_union1 = get_args(type1)
                # Check if all types in type1's Union are in type2's Union
                if not all(any(t1 == t2 for t2 in types_in_union2) for t1 in types_in_union1):
                    return False
            else:
                # Check if type1 is in type2's Union
                if not any(type1 == t2 for t2 in types_in_union2):
                    return False
        else:
            # Direct type comparison
            if type1 != type2:
                return False

    return True

# RUN SYNTHESIZER
def run_synthesizer(examples, max_weight):
    '''
    Run bottom-up enumerative synthesis.
    '''
    program_bank = rasp_consts
    program_bank_str = [p.str() for p in program_bank]
    
    # TODO: store approximate programs, measured by number of output examples that match
    
    # iterate over each level
    for weight in range(2, max_weight):
        
        for op in rasp_operators:
            combinations = itertools.permutations(program_bank, op.n_args)
            
            for combination in combinations:
                
                type_signature = [p.return_type for p in combination]
                
                if not compare_types(type_signature, op.arg_types):
                    continue
    
                if sum([p.weight for p in combination]) > weight:
                    continue
                
                program = OperatorNode(op, combination)
                
                if program.str() in program_bank_str:
                    continue
                
                if any([check_obs_equivalence(examples, program, p) for p in program_bank]):
                    continue
                
                program_bank.append(program)
                program_bank_str.append(program.str())
                
                if check_correctness(examples, program):
                    return(program)  
 
    return None

# COMPILE RASP MODEL
if __name__ == "__main__":
    
    '''
    Some examples:
    Identify anagrams:
    [[['V','I','W',',','W','I','V'], [True, True, True, True, True, True, True]],[['a','b',',','b','a'], [True, True, True, True, True]],[['e','l',',','s','t'], [False, False, False, False, False]]]
        Output: times out
    Calculate the median of a list of numbers:
    [[[1,2,3,4,5], [3,3,3,3,3]], [[2,8,10,11], [9,9,9,9]], [[1,2,3],[2,2,2]]]
        Output: times out
    Identity function:
    [[['h','i'], ['h','i']]]
        Output: (aggregate((select(tokens, tokens, ==)), tokens))
    Histogram:
    [[['h', 'e', 'l', 'l', 'o'], [1,1,2,2,1]]]
        Output: (select_width((select(tokens, tokens, ==))))
    Length:
    [[[7,2,5],[3,3,3]],[[1],[1]],[[2,0,1,7,3,6,8,20],[8,8,8,8,8,8,8,8]]]
        Output: (select_width((select(tokens, tokens, true))))
    Calculate mean of list of numbers:
    [[[5,10,3,2,43], [12.6, 12.6, 12.6, 12.6, 12.6]],[[1,2], [1.5, 1.5]],[[3,3,3],[3,3,3]]]
        Output: (aggregate((select(tokens, tokens, true)), tokens))
    Reverse a string:
    [[['h', 'i'], ['i', 'h']]]
        Output: times out
        Expected: aggregate(select(indices, (select_width((select(tokens, tokens, true)))) - indices - 1, ==), tokens);
    PERSONAL TODOS:
    - output several similar programs
    - 
    
    '''
    
    args = parse_args()
    inputs, outs = analyze_examples(args.examples)
    examples = list(zip(inputs, outs))
    print("Received the following input and output examples:")
    print(examples)
    max_seq_len = 0
    for i in inputs:
        max_seq_len = max(len(i), max_seq_len)
    vocab = get_vocabulary(examples)
    
    print("Running synthesizer with")
    print("Vocab: {}".format(vocab))
    print("Max sequence length: {}".format(max_seq_len))
    print("Max weight: {}".format(args.max_weight))
    
    program = run_synthesizer(examples, args.max_weight)
    
    if program:
        algorithm = program.to_python()
        
        bos = "BOS"
        model = compiling.compile_rasp_to_model(
            algorithm,
            vocab=vocab,
            max_seq_len=max_seq_len,
            compiler_bos=bos,
        )
        
        
        def extract_layer_number(s):
            match = re.search(r'layer_(\d+)', s)
            if match:
                return int(match.group(1)) + 1
            else:
                return None
        
        layer_num = extract_layer_number(list(model.params.keys())[-1])
        print(f"The following program has been compiled to a transformer with {layer_num} layer(s):")
        print(program.str())
    else:
        print("No program found.")