Spaces:
Sleeping
Sleeping
File size: 12,125 Bytes
9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Add craft model blocks to graph of RASPExpr."""
from typing import Any, Callable, Optional
import networkx as nx
from tracr.compiler import nodes
from tracr.craft import bases
from tracr.craft.chamber import categorical_attn
from tracr.craft.chamber import categorical_mlp
from tracr.craft.chamber import numerical_mlp
from tracr.craft.chamber import selector_width
from tracr.rasp import rasp
def _transform_fun_to_basis_fun(
fun: Callable[..., Any],
output_direction_name: Optional[str] = None) -> Callable[..., Any]:
"""Transforms a function acting on values into one acting on directions."""
def bases_fun(*args):
values = [d.value for d in args]
result = fun(*values)
if output_direction_name:
return bases.BasisDirection(output_direction_name, result)
return result
return bases_fun
def _check_selector_expression(expr, graph):
"""Check graph structure and encodings for an aggregate or selector width."""
sel_expr = expr.selector
# Check graph structure
assert sel_expr.label in graph.predecessors(expr.label)
assert sel_expr.keys.label in graph.predecessors(sel_expr.label)
assert sel_expr.queries.label in graph.predecessors(sel_expr.label)
if (not rasp.is_categorical(sel_expr.queries) or
not rasp.is_categorical(sel_expr.keys)):
raise ValueError("Selector keys and queries must be categorical.")
def add_craft_components_to_rasp_graph(
graph: nx.DiGraph,
bos_dir: bases.BasisDirection = bases.BasisDirection("tokens", "bos"),
one_dir: bases.BasisDirection = bases.BasisDirection("one"),
causal: bool = False,
mlp_exactness: float = 100,
) -> None:
"""Translates expressions to craft blocks and attaches them to the graph.
Sets the `MODEL_BLOCK` attribute for all nodes in `graph`.
Args:
graph: RASP graph with `VALUE_SET` but not `MODEL_BLOCK` attributes.
bos_dir: Basis direction representing beginning of sequence (bos) token.
one_dir: Auxiliary basis direction that must contain 1.
causal: If True, marks attention blocks as causal.
mlp_exactness: Controls the approximation of the MLP layers.
Raises:
ValueError: On invalid input (if `MODEL_BLOCK` is set already, or
`VALUE_SET` is not set already)
NotImplementedError: If the graph contains an unsupported expression.
"""
one_space = bases.VectorSpaceWithBasis([one_dir])
for node_id, node in graph.nodes.items():
expr = node[nodes.EXPR]
if not isinstance(expr, rasp.SOp):
continue
if nodes.MODEL_BLOCK in node and node[nodes.MODEL_BLOCK]:
raise ValueError("Input graph cannot have model blocks set already.")
if nodes.VALUE_SET not in node:
raise ValueError(
"Craft components can only be added after basis inference.")
if expr is rasp.tokens or expr is rasp.indices:
block = None
elif isinstance(expr, rasp.Map):
inner_expr, inner_node = expr.inner, graph.nodes[expr.inner.label]
assert inner_expr.label in graph.predecessors(node_id)
input_space = bases.VectorSpaceWithBasis(inner_node[nodes.OUTPUT_BASIS])
output_space = bases.VectorSpaceWithBasis(node[nodes.OUTPUT_BASIS])
if rasp.is_categorical(inner_expr) and rasp.is_categorical(expr):
basis_fun = _transform_fun_to_basis_fun(expr.f, expr.label)
block = categorical_mlp.map_categorical_mlp(
input_space=input_space,
output_space=output_space,
operation=basis_fun)
elif rasp.is_categorical(inner_expr) and rasp.is_numerical(expr):
block = categorical_mlp.map_categorical_to_numerical_mlp(
input_space=input_space,
output_space=output_space,
operation=expr.f,
)
elif rasp.is_numerical(inner_expr) and rasp.is_categorical(expr):
block = numerical_mlp.map_numerical_to_categorical_mlp(
f=expr.f,
input_space=input_space,
output_space=output_space,
input_value_set=inner_node[nodes.VALUE_SET],
one_space=one_space,
hidden_name=f"_hidden_{expr.label}_",
large_number=mlp_exactness)
elif rasp.is_numerical(inner_expr) and rasp.is_numerical(expr):
block = numerical_mlp.map_numerical_mlp(
f=expr.f,
input_space=input_space,
output_space=output_space,
input_value_set=inner_node[nodes.VALUE_SET],
one_space=one_space,
hidden_name=f"_hidden_{expr.label}_",
large_number=mlp_exactness)
else:
raise NotImplementedError("Map does no support "
f"in_type '{inner_expr.type}' and"
f" out_type '{expr.type}'!")
elif isinstance(expr, rasp.SequenceMap):
fst_expr, fst_node = expr.fst, graph.nodes[expr.fst.label]
snd_expr, snd_node = expr.snd, graph.nodes[expr.snd.label]
# Check graph structure
assert fst_expr.label in graph.predecessors(node_id)
assert snd_expr.label in graph.predecessors(node_id)
fst_space = bases.VectorSpaceWithBasis(fst_node[nodes.OUTPUT_BASIS])
snd_space = bases.VectorSpaceWithBasis(snd_node[nodes.OUTPUT_BASIS])
out_space = bases.VectorSpaceWithBasis(node[nodes.OUTPUT_BASIS])
if (isinstance(expr, rasp.LinearSequenceMap) and
not all(rasp.is_numerical(x) for x in (fst_expr, snd_expr, expr))):
raise NotImplementedError("Linear SequenceMap only supports numerical "
"inputs/outputs.")
elif (
not isinstance(expr, rasp.LinearSequenceMap) and
not all(rasp.is_categorical(x) for x in (fst_expr, snd_expr, expr))):
raise NotImplementedError("(Non-linear) SequenceMap only supports "
"categorical inputs/outputs.")
if isinstance(expr, rasp.LinearSequenceMap):
assert len(fst_space.basis) == 1
assert len(snd_space.basis) == 1
assert len(out_space.basis) == 1
block = numerical_mlp.linear_sequence_map_numerical_mlp(
input1_basis_direction=fst_space.basis[0],
input2_basis_direction=snd_space.basis[0],
output_basis_direction=out_space.basis[0],
input1_factor=expr.fst_fac,
input2_factor=expr.snd_fac,
hidden_name=f"_hidden_{expr.label}_")
elif fst_space == snd_space:
# It's okay to use the local variable expr.f because it is
# only used within the same loop iteration to create the MLP.
# pylint: disable=cell-var-from-loop
basis_fun = _transform_fun_to_basis_fun(lambda x: expr.f(x, x),
expr.label)
block = categorical_mlp.map_categorical_mlp(
input_space=fst_space, output_space=out_space, operation=basis_fun)
else:
basis_fun = _transform_fun_to_basis_fun(expr.f, expr.label)
block = categorical_mlp.sequence_map_categorical_mlp(
input1_space=fst_space,
input2_space=snd_space,
output_space=out_space,
operation=basis_fun,
one_space=one_space,
hidden_name=f"_hidden_{expr.label}_")
elif isinstance(expr, rasp.Aggregate):
sel_expr: rasp.Select = expr.selector
agg_expr: rasp.Aggregate = expr
if not isinstance(sel_expr, rasp.Select):
raise TypeError("Compiling composite Selectors is not supported. "
f"Got a {sel_expr}.")
queries = graph.nodes[sel_expr.queries.label]
keys = graph.nodes[sel_expr.keys.label]
sop = graph.nodes[agg_expr.sop.label]
_check_selector_expression(expr, graph)
assert agg_expr.sop.label in graph.predecessors(node_id)
if rasp.get_encoding(agg_expr.sop) != rasp.get_encoding(agg_expr):
raise ValueError(
"sop encoding must match output encoding of the aggregate.")
if rasp.is_categorical(agg_expr) and agg_expr.default is not None:
raise ValueError("Default for a categorical aggregate must be None. "
f"Got {agg_expr.default}")
if rasp.is_numerical(agg_expr) and agg_expr.default != 0:
raise ValueError("Default for a numerical aggregate must be 0. "
f"Got {agg_expr.default}")
bos_space = bases.VectorSpaceWithBasis([bos_dir])
one_space = bases.VectorSpaceWithBasis([one_dir])
query_space = bases.VectorSpaceWithBasis(queries[nodes.OUTPUT_BASIS])
key_space = bases.VectorSpaceWithBasis(keys[nodes.OUTPUT_BASIS])
value_space = bases.VectorSpaceWithBasis(sop[nodes.OUTPUT_BASIS])
output_space = bases.VectorSpaceWithBasis(node[nodes.OUTPUT_BASIS])
# Argument order is different in craft / transformers than RASP selectors
def attn_basis_fn(query: bases.BasisDirection,
key: bases.BasisDirection) -> bool:
# It's okay to use the local variable sel_expr because this function is
# only used within the same loop iteration to create an attention head.
# pylint: disable=cell-var-from-loop
selector_basis_fn = _transform_fun_to_basis_fun(sel_expr.predicate)
return selector_basis_fn(key, query)
block = categorical_attn.categorical_attn(
query_space=query_space,
key_space=key_space,
value_space=value_space,
output_space=output_space,
bos_space=bos_space,
one_space=one_space,
attn_fn=attn_basis_fn,
default_output=output_space.null_vector(),
causal=causal,
always_attend_to_bos=False,
use_bos_for_default_output=True,
softmax_coldness=100)
elif isinstance(expr, rasp.SelectorWidth):
sel_expr = expr.selector
queries = graph.nodes[sel_expr.queries.label]
keys = graph.nodes[sel_expr.keys.label]
_check_selector_expression(expr, graph)
bos_space = bases.VectorSpaceWithBasis([bos_dir])
query_space = bases.VectorSpaceWithBasis(queries[nodes.OUTPUT_BASIS])
key_space = bases.VectorSpaceWithBasis(keys[nodes.OUTPUT_BASIS])
output_space = bases.VectorSpaceWithBasis(node[nodes.OUTPUT_BASIS])
# Argument order is different in craft / transformers than RASP selectors
def attn_basis_fn(query: bases.BasisDirection,
key: bases.BasisDirection) -> bool:
# It's okay to use the local variable sel_expr because this function is
# only used within the same loop iteration to create an attention head.
selector_basis_fn = _transform_fun_to_basis_fun(sel_expr.predicate) # pylint: disable=cell-var-from-loop
return selector_basis_fn(key, query)
block = selector_width.selector_width(
query_space=query_space,
key_space=key_space,
output_space=output_space,
bos_space=bos_space,
one_space=one_space,
attn_fn=attn_basis_fn,
out_value_set=node[nodes.VALUE_SET],
categorical_output=rasp.is_categorical(expr),
causal=False,
softmax_coldness=100,
mlp_large_number=mlp_exactness,
label=expr.label)
else:
raise NotImplementedError(f"Expression {expr} cannot be translated to "
"a model component.")
graph.nodes[node_id][nodes.MODEL_BLOCK] = block
|