File size: 6,548 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Modified transformer to learn a linear compression of the residual stream.

CompressedTransformer adds three arguments compared to Transformer:
- embedding_size: the size of the compressed residual stream.
- unembed_at_every_layer: whether to apply the unembedding before applying
    attention and MLP layers
- return_activations: whether to return all model activations rather than just
    the outputs
"""

import collections
import dataclasses
from typing import Optional

import haiku as hk
import jax
import numpy as np

from tracr.transformer import attention
from tracr.transformer import model


@dataclasses.dataclass
class CompressedTransformer(hk.Module):
  """A transformer stack with linearly compressed residual stream."""

  config: model.TransformerConfig
  name: Optional[str] = None

  def __call__(
      self,
      embeddings: jax.Array,  # [B, T, D]
      mask: jax.Array,  # [B, T]
      *,
      use_dropout: bool = True,
      embedding_size: Optional[int] = None,
      unembed_at_every_layer: bool = False,
  ) -> model.TransformerOutput:  # [B, T, D]
    """Transforms input embedding sequences to output embedding sequences.

    Args:
      embeddings: Input embeddings to pass through the model.
      mask: Boolean mask to restrict the inputs the model uses.
      use_dropout: Turns dropout on/off.
      embedding_size: Dimension to compress the residual stream to.
      unembed_at_every_layer: Whether to unembed the residual stream when
        reading the input for every layer (keeping the layer input sizes) or to
        only unembed before the model output (compressing the layer inputs).

    Returns:
      The outputs of the forward pass through the transformer.
    """

    def layer_norm(x: jax.Array) -> jax.Array:
      """Applies a unique LayerNorm to x with default settings."""
      if self.config.layer_norm:
        return hk.LayerNorm(axis=-1, create_scale=True, create_offset=True)(x)
      return x

    initializer = hk.initializers.VarianceScaling(2 / self.config.num_layers)
    dropout_rate = self.config.dropout_rate if use_dropout else 0.
    _, seq_len, model_size = embeddings.shape

    # To compress the model, we multiply with a matrix W when reading from
    # the residual stream, and with W^T when writing to the residual stream.
    if embedding_size is not None:
      # [to_size, from_size]
      w_emb = hk.get_parameter(
          "w_emb", (embedding_size, model_size),
          init=hk.initializers.RandomNormal())

      write_to_residual = lambda x: x @ w_emb.T
      read_from_residual = lambda x: x @ w_emb

      if not unembed_at_every_layer:
        model_size = embedding_size
    else:
      write_to_residual = lambda x: x
      read_from_residual = lambda x: x

    # Compute causal mask for autoregressive sequence modelling.
    mask = mask[:, None, None, :]  # [B, H=1, T'=1, T]
    mask = mask.repeat(seq_len, axis=2)  # [B, H=1, T, T]

    if self.config.causal:
      causal_mask = np.ones((1, 1, seq_len, seq_len))  # [B=1, H=1, T, T]
      causal_mask = np.tril(causal_mask)
      mask = mask * causal_mask  # [B, H=1, T, T]

    # Set up activation collection.
    collected = collections.defaultdict(list)

    def collect(**kwargs):
      for k, v in kwargs.items():
        collected[k].append(v)

    residual = write_to_residual(embeddings)

    for layer in range(self.config.num_layers):
      with hk.experimental.name_scope(f"layer_{layer}"):
        # First the attention block.
        attn_block = attention.MultiHeadAttention(
            num_heads=self.config.num_heads,
            key_size=self.config.key_size,
            model_size=model_size,
            w_init=initializer,
            name="attn")

        attn_in = residual
        if unembed_at_every_layer:
          attn_in = read_from_residual(attn_in)
        attn_in = layer_norm(attn_in)
        attn_out = attn_block(attn_in, attn_in, attn_in, mask=mask)
        attn_out, attn_logits = attn_out.out, attn_out.logits
        if dropout_rate > 0:
          attn_out = hk.dropout(hk.next_rng_key(), dropout_rate, attn_out)

        if unembed_at_every_layer:
          collect(layer_outputs=attn_out, attn_logits=attn_logits)
        else:
          collect(
              layer_outputs=read_from_residual(attn_out),
              attn_logits=attn_logits,
          )

        if unembed_at_every_layer:
          attn_out = write_to_residual(attn_out)
        residual = residual + attn_out

        collect(residuals=residual)

        # Then the dense block.
        with hk.experimental.name_scope("mlp"):
          dense_block = hk.Sequential([
              hk.Linear(
                  self.config.mlp_hidden_size,
                  w_init=initializer,
                  name="linear_1"),
              self.config.activation_function,
              hk.Linear(model_size, w_init=initializer, name="linear_2"),
          ])

        dense_in = residual
        if unembed_at_every_layer:
          dense_in = read_from_residual(dense_in)
        dense_in = layer_norm(dense_in)
        dense_out = dense_block(dense_in)
        if dropout_rate > 0:
          dense_out = hk.dropout(hk.next_rng_key(), dropout_rate, dense_out)

        if unembed_at_every_layer:
          collect(layer_outputs=dense_out)
        else:
          collect(layer_outputs=read_from_residual(dense_out))

        if unembed_at_every_layer:
          dense_out = write_to_residual(dense_out)
        residual = residual + dense_out

        collect(residuals=residual)

    output = read_from_residual(residual)
    output = layer_norm(output)

    return model.TransformerOutput(
        layer_outputs=collected["layer_outputs"],
        residuals=collected["residuals"],
        attn_logits=collected["attn_logits"],
        output=output,
        input_embeddings=embeddings,
    )