File size: 8,674 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Vectors and bases."""

import dataclasses
from typing import Sequence, Union, Optional, Iterable

import numpy as np

Name = Union[int, str]
Value = Union[int, float, bool, str, tuple]


@dataclasses.dataclass(frozen=True)
class BasisDirection:
  """Represents a basis direction (no magnitude) in a vector space.

  Attributes:
    name: a unique name for this direction.
    value: used to hold a value one-hot-encoded by this direction. e.g.,
      [BasisDirection("vs_1", True), BasisDirection("vs_1", False)] would be
      basis directions of a subspace called "vs_1" which one-hot-encodes the
      values True and False. If provided, considered part of the name for the
      purpose of disambiguating directions.
  """
  name: Name
  value: Optional[Value] = None

  def __str__(self):
    if self.value is None:
      return str(self.name)
    return f"{self.name}:{self.value}"

  def __lt__(self, other: "BasisDirection") -> bool:
    try:
      return (self.name, self.value) < (other.name, other.value)
    except TypeError:
      return str(self) < str(other)


@dataclasses.dataclass
class VectorInBasis:
  """A vector (or array of vectors) in a given basis.

  When magnitudes are 1-d, this is a vector.
  When magnitudes are (n+1)-d, this is an array of vectors,
  where the -1th dimension is the basis dimension.
  """
  basis_directions: Sequence[BasisDirection]
  magnitudes: np.ndarray

  def __post_init__(self):
    """Sort basis directions."""
    if len(self.basis_directions) != self.magnitudes.shape[-1]:
      raise ValueError(
          "Last dimension of magnitudes must be the same as number "
          f"of basis directions. Was {len(self.basis_directions)} "
          f"and {self.magnitudes.shape[-1]}.")

    sort_idx = np.argsort(self.basis_directions)
    self.basis_directions = [self.basis_directions[i] for i in sort_idx]
    self.magnitudes = np.take(self.magnitudes, sort_idx, -1)

  def __add__(self, other: "VectorInBasis") -> "VectorInBasis":
    if self.basis_directions != other.basis_directions:
      raise TypeError(f"Adding incompatible bases: {self} + {other}")
    magnitudes = self.magnitudes + other.magnitudes
    return VectorInBasis(self.basis_directions, magnitudes)

  def __radd__(self, other: "VectorInBasis") -> "VectorInBasis":
    if self.basis_directions != other.basis_directions:
      raise TypeError(f"Adding incompatible bases: {other} + {self}")
    return self + other

  def __sub__(self, other: "VectorInBasis") -> "VectorInBasis":
    if self.basis_directions != other.basis_directions:
      raise TypeError(f"Subtracting incompatible bases: {self} - {other}")
    magnitudes = self.magnitudes - other.magnitudes
    return VectorInBasis(self.basis_directions, magnitudes)

  def __rsub__(self, other: "VectorInBasis") -> "VectorInBasis":
    if self.basis_directions != other.basis_directions:
      raise TypeError(f"Subtracting incompatible bases: {other} - {self}")
    magnitudes = other.magnitudes - self.magnitudes
    return VectorInBasis(self.basis_directions, magnitudes)

  def __mul__(self, scalar: float) -> "VectorInBasis":
    return VectorInBasis(self.basis_directions, self.magnitudes * scalar)

  def __rmul__(self, scalar: float) -> "VectorInBasis":
    return self * scalar

  def __truediv__(self, scalar: float) -> "VectorInBasis":
    return VectorInBasis(self.basis_directions, self.magnitudes / scalar)

  def __neg__(self) -> "VectorInBasis":
    return (-1) * self

  def __eq__(self, other: "VectorInBasis") -> bool:
    return ((self.basis_directions == other.basis_directions) and
            (self.magnitudes.shape == other.magnitudes.shape) and
            (np.all(self.magnitudes == other.magnitudes)))

  @classmethod
  def sum(cls, vectors: Sequence["VectorInBasis"]) -> "VectorInBasis":
    return cls(vectors[0].basis_directions,
               np.sum([x.magnitudes for x in vectors], axis=0))

  @classmethod
  def stack(cls,
            vectors: Sequence["VectorInBasis"],
            axis: int = 0) -> "VectorInBasis":
    for v in vectors[1:]:
      if v.basis_directions != vectors[0].basis_directions:
        raise TypeError(f"Stacking incompatible bases: {vectors[0]} + {v}")
    return cls(vectors[0].basis_directions,
               np.stack([v.magnitudes for v in vectors], axis=axis))

  def project(
      self, basis: Union["VectorSpaceWithBasis", Sequence[BasisDirection]]
  ) -> "VectorInBasis":
    """Projects to the basis."""
    if isinstance(basis, VectorSpaceWithBasis):
      basis = basis.basis
    components = []
    for direction in basis:
      if direction in self.basis_directions:
        components.append(
            self.magnitudes[..., self.basis_directions.index(direction)])
      else:
        components.append(np.zeros_like(self.magnitudes[..., 0]))
    return VectorInBasis(list(basis), np.stack(components, axis=-1))


@dataclasses.dataclass
class VectorSpaceWithBasis:
  """A vector subspace in a given basis."""
  basis: Sequence[BasisDirection]

  def __post_init__(self):
    """Keep basis directions sorted."""
    self.basis = sorted(self.basis)

  @property
  def num_dims(self) -> int:
    return len(self.basis)

  def __contains__(self, item: Union[VectorInBasis, BasisDirection]) -> bool:
    if isinstance(item, BasisDirection):
      return item in self.basis

    return set(self.basis) == set(item.basis_directions)

  def issubspace(self, other: "VectorSpaceWithBasis") -> bool:
    return set(self.basis).issubset(set(other.basis))

  def basis_vectors(self) -> Sequence[VectorInBasis]:
    basis_vector_magnitudes = list(np.eye(self.num_dims))
    return [VectorInBasis(self.basis, m) for m in basis_vector_magnitudes]

  def vector_from_basis_direction(
      self, basis_direction: BasisDirection) -> VectorInBasis:
    i = self.basis.index(basis_direction)
    return VectorInBasis(self.basis, np.eye(self.num_dims)[i])

  def null_vector(self) -> VectorInBasis:
    return VectorInBasis(self.basis, np.zeros(self.num_dims))

  @classmethod
  def from_names(cls, names: Sequence[Name]) -> "VectorSpaceWithBasis":
    """Creates a VectorSpace from a list of names for its basis directions."""
    return cls([BasisDirection(n) for n in names])

  @classmethod
  def from_values(
      cls,
      name: Name,
      values: Iterable[Value],
  ) -> "VectorSpaceWithBasis":
    """Creates a VectorSpace from a list of values for its basis directions."""
    return cls([BasisDirection(name, v) for v in values])


def direct_sum(*vs: VectorSpaceWithBasis) -> VectorSpaceWithBasis:
  """Create a direct sum of the vector spaces.

  Assumes the basis elements of all input vector spaces are
  orthogonal to each other. Maintains the order of the bases.

  Args:
    *vs: the vector spaces to sum.

  Returns:
    the combined vector space.

  Raises:
    Value error in case of overlapping bases.
  """
  # Take the union of all the bases:
  total_basis = sum([v.basis for v in vs], [])

  if len(total_basis) != len(set(total_basis)):
    raise ValueError("Overlapping bases!")

  return VectorSpaceWithBasis(total_basis)


def join_vector_spaces(*vs: VectorSpaceWithBasis) -> VectorSpaceWithBasis:
  """Joins a set of vector spaces allowing them to overlap.

  Assumes the basis elements of all input vector spaces are
  orthogonal to each other. Does not maintain the order of the bases but
  sorts them.

  Args:
    *vs: the vector spaces to sum.

  Returns:
    the combined vector space.
  """
  # Take the union of all the bases:
  total_basis = list(set().union(*[set(v.basis) for v in vs]))
  total_basis = sorted(total_basis)
  return VectorSpaceWithBasis(total_basis)


def ensure_dims(
    vs: VectorSpaceWithBasis,
    num_dims: int,
    name: str = "vector space",
) -> None:
  """Raises ValueError if vs has the wrong number of dimensions."""
  if vs.num_dims != num_dims:
    raise ValueError(f"{name} must have {num_dims=}, "
                     f"but got {vs.num_dims}: {vs.basis}")