Spaces:
Sleeping
Sleeping
File size: 6,889 Bytes
9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Pieces for making transformers."""
import abc
import dataclasses
from typing import Iterable, Optional, Sequence, Union
import numpy as np
from tracr.craft import bases
from tracr.craft import vectorspace_fns
project = vectorspace_fns.project
def _np_softmax(x, axis=-1):
x_max = np.max(x, axis=axis, keepdims=True)
return np.exp(x - x_max) / np.sum(np.exp(x - x_max), axis=axis, keepdims=True)
def _np_relu(x):
return np.where(x > 0, x, 0)
def relu(x: bases.VectorInBasis) -> bases.VectorInBasis:
return bases.VectorInBasis(x.basis_directions, _np_relu(x.magnitudes))
class Block(abc.ABC):
"""Transformer block, acting on a sequence of vector space elements.
Attributes:
residual_space: Vector space that contains all subspaces the Block interacts
with. This can be either the full residual space of a model or a subspace.
"""
residual_space: bases.VectorSpaceWithBasis
@abc.abstractmethod
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
"""Applies self to an input."""
@dataclasses.dataclass
class AttentionHead(Block):
"""A transformer attention head."""
w_qk: vectorspace_fns.ScalarBilinear
w_ov: vectorspace_fns.Linear
residual_space: Optional[bases.VectorSpaceWithBasis] = None
causal: bool = False
def __post_init__(self):
"""Infer residual stream and typecheck subspaces."""
if self.residual_space is None:
self.residual_space = bases.join_vector_spaces(self.w_qk.left_space,
self.w_qk.right_space,
self.w_ov.input_space,
self.w_ov.output_space)
assert self.w_qk.left_space.issubspace(self.residual_space)
assert self.w_qk.right_space.issubspace(self.residual_space)
assert self.w_ov.input_space.issubspace(self.residual_space)
assert self.w_ov.output_space.issubspace(self.residual_space)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
assert x in self.residual_space
# seq_len x query_space
queries = x.project(self.w_qk.left_space)
# seq_len x key_space
keys = x.project(self.w_qk.right_space)
attn_matrix = queries.magnitudes @ self.w_qk.matrix @ keys.magnitudes.T
if self.causal:
# The 1 gives us the matrix above the diagonal.
mask = np.triu(np.full_like(attn_matrix, -np.inf), 1)
attn_matrix = attn_matrix + mask
attn_weights = _np_softmax(attn_matrix) # seq_len_from, seq_len_to
values = self.w_ov_residual(x).magnitudes # seq_len_to, d_model
magnitudes = attn_weights @ values # seq_len_from, d_model
return bases.VectorInBasis(sorted(self.residual_space.basis), magnitudes)
def w_ov_residual(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
"""Wov but acting on the residual space."""
x = project(self.residual_space, self.w_ov.input_space)(x)
out = self.w_ov(x)
return project(self.w_ov.output_space, self.residual_space)(out)
@property
def num_heads(self) -> int:
return 1
def as_multi(self) -> "MultiAttentionHead":
return MultiAttentionHead([self])
@dataclasses.dataclass
class MultiAttentionHead(Block):
"""Applies attention heads in parallel."""
sub_blocks: list[Union[AttentionHead, "MultiAttentionHead"]]
def __post_init__(self):
spaces = [block.residual_space for block in self.sub_blocks]
self.residual_space, *others = spaces
assert all(s == self.residual_space for s in others)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
# each element is seq_len x embedding
outs = [block.apply(x) for block in self.sub_blocks]
return bases.VectorInBasis.sum(outs) # seq_len x embedding
@property
def num_heads(self) -> int:
return sum(sub_block.num_heads for sub_block in self.sub_blocks)
def heads(self) -> Iterable[AttentionHead]:
for sub_block in self.sub_blocks:
if isinstance(sub_block, AttentionHead):
yield sub_block
elif isinstance(sub_block, MultiAttentionHead):
yield from sub_block.heads()
else:
raise NotImplementedError()
def as_multi(self) -> "MultiAttentionHead":
return self
@dataclasses.dataclass
class MLP(Block):
"""A transformer MLP block."""
fst: vectorspace_fns.Linear
snd: vectorspace_fns.Linear
residual_space: Optional[bases.VectorSpaceWithBasis] = None
def __post_init__(self):
"""Typecheck subspaces."""
if self.residual_space is None:
self.residual_space = bases.join_vector_spaces(self.fst.input_space,
self.snd.output_space)
assert self.fst.output_space == self.snd.input_space
assert self.fst.input_space.issubspace(self.residual_space)
assert self.snd.output_space.issubspace(self.residual_space)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
assert x in self.residual_space
x = project(self.residual_space, self.fst.input_space)(x)
hidden = self.fst(x)
hidden = relu(hidden)
out = self.snd(hidden)
return project(self.snd.output_space, self.residual_space)(out)
@classmethod
def combine_in_parallel(cls, mlps: Sequence["MLP"]) -> "MLP":
fst = vectorspace_fns.Linear.combine_in_parallel(
[block.fst for block in mlps])
snd = vectorspace_fns.Linear.combine_in_parallel(
[block.snd for block in mlps])
return cls(fst=fst, snd=snd, residual_space=None)
# Block that fits into a half-layer, without residual connections.
HalfLayerBlock = Union[MLP, AttentionHead, MultiAttentionHead]
@dataclasses.dataclass
class SeriesWithResiduals(Block):
"""A series of blocks with residual connections."""
blocks: list[HalfLayerBlock]
def __post_init__(self):
spaces = [block.residual_space for block in self.blocks]
self.residual_space = bases.join_vector_spaces(*spaces)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
x = x.project(self.residual_space)
for block in self.blocks:
x_in = x.project(block.residual_space)
x_out = block.apply(x_in).project(self.residual_space)
x = x + x_out
return x
|