File size: 5,388 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions on vector spaces."""

import abc
import dataclasses
from typing import Callable, Sequence

import numpy as np

from tracr.craft import bases

VectorSpaceWithBasis = bases.VectorSpaceWithBasis
VectorInBasis = bases.VectorInBasis
BasisDirection = bases.BasisDirection


class VectorFunction(abc.ABC):
  """A function that acts on vectors."""

  input_space: VectorSpaceWithBasis
  output_space: VectorSpaceWithBasis

  @abc.abstractmethod
  def __call__(self, x: VectorInBasis) -> VectorInBasis:
    """Evaluates the function."""


class Linear(VectorFunction):
  """A linear function."""

  def __init__(
      self,
      input_space: VectorSpaceWithBasis,
      output_space: VectorSpaceWithBasis,
      matrix: np.ndarray,
  ):
    """Initialises.

    Args:
      input_space: The input vector space.
      output_space: The output vector space.
      matrix: a [input, output] matrix acting in a (sorted) basis.
    """
    self.input_space = input_space
    self.output_space = output_space
    self.matrix = matrix

  def __post_init__(self) -> None:
    output_size, input_size = self.matrix.shape
    assert input_size == self.input_space.num_dims
    assert output_size == self.output_space.num_dims

  def __call__(self, x: VectorInBasis) -> VectorInBasis:
    if x not in self.input_space:
      raise TypeError(f"{x=} not in {self.input_space=}.")
    return VectorInBasis(
        basis_directions=sorted(self.output_space.basis),
        magnitudes=x.magnitudes @ self.matrix,
    )

  @classmethod
  def from_action(
      cls,
      input_space: VectorSpaceWithBasis,
      output_space: VectorSpaceWithBasis,
      action: Callable[[BasisDirection], VectorInBasis],
  ) -> "Linear":
    """from_action(i, o)(action) creates a Linear."""

    matrix = np.zeros((input_space.num_dims, output_space.num_dims))
    for i, direction in enumerate(input_space.basis):
      out_vector = action(direction)
      if out_vector not in output_space:
        raise TypeError(f"image of {direction} from {input_space=} "
                        f"is not in {output_space=}")
      matrix[i, :] = out_vector.magnitudes

    return Linear(input_space, output_space, matrix)

  @classmethod
  def combine_in_parallel(cls, fns: Sequence["Linear"]) -> "Linear":
    """Combines multiple parallel linear functions into a single one."""
    joint_input_space = bases.join_vector_spaces(
        *[fn.input_space for fn in fns])
    joint_output_space = bases.join_vector_spaces(
        *[fn.output_space for fn in fns])

    def action(x: bases.BasisDirection) -> bases.VectorInBasis:
      out = joint_output_space.null_vector()
      for fn in fns:
        if x in fn.input_space:
          x_vec = fn.input_space.vector_from_basis_direction(x)
          out += fn(x_vec).project(joint_output_space)
      return out

    return cls.from_action(joint_input_space, joint_output_space, action)


def project(
    from_space: VectorSpaceWithBasis,
    to_space: VectorSpaceWithBasis,
) -> Linear:
  """Creates a projection."""

  def action(direction: bases.BasisDirection) -> VectorInBasis:
    if direction in to_space:
      return to_space.vector_from_basis_direction(direction)
    else:
      return to_space.null_vector()

  return Linear.from_action(from_space, to_space, action=action)


@dataclasses.dataclass
class ScalarBilinear:
  """A scalar-valued bilinear operator."""
  left_space: VectorSpaceWithBasis
  right_space: VectorSpaceWithBasis
  matrix: np.ndarray

  def __post_init__(self):
    """Ensure matrix acts in sorted bases and typecheck sizes."""
    left_size, right_size = self.matrix.shape
    assert left_size == self.left_space.num_dims
    assert right_size == self.right_space.num_dims

  def __call__(self, x: VectorInBasis, y: VectorInBasis) -> float:
    """Describes the action of the operator on vectors."""
    if x not in self.left_space:
      raise TypeError(f"{x=} not in {self.left_space=}.")
    if y not in self.right_space:
      raise TypeError(f"{y=} not in {self.right_space=}.")
    return (x.magnitudes.T @ self.matrix @ y.magnitudes).item()

  @classmethod
  def from_action(
      cls,
      left_space: VectorSpaceWithBasis,
      right_space: VectorSpaceWithBasis,
      action: Callable[[BasisDirection, BasisDirection], float],
  ) -> "ScalarBilinear":
    """from_action(l, r)(action) creates a ScalarBilinear."""

    matrix = np.zeros((left_space.num_dims, right_space.num_dims))
    for i, left_direction in enumerate(left_space.basis):
      for j, right_direction in enumerate(right_space.basis):
        matrix[i, j] = action(left_direction, right_direction)

    return ScalarBilinear(left_space, right_space, matrix)