Spaces:
Sleeping
Sleeping
File size: 12,893 Bytes
9bdaa77 c46567d 9bdaa77 ec45a3d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Assemble weights of a transformer model from a craft residual stack."""
import dataclasses
from typing import Any, Callable, Optional, List, Tuple
import chex
import einops
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
from tracr.craft import bases
from tracr.craft import transformers
from tracr.craft import vectorspace_fns
from tracr.transformer import encoder
from tracr.transformer import model
from typing_extensions import Protocol
@chex.dataclass
class AssembledTransformerModelOutput:
decoded: List[Any] # length T.
unembedded: jax.Array # [B, T] B = 1 always.
layer_outputs: List[jax.Array] # [B, T, D]
residuals: List[jax.Array] # [B, T, D]
attn_logits: List[jax.Array] # [B, T, T, H]
transformer_output: jax.Array # [B, T, D]
input_embeddings: jax.Array
class ModelForward(Protocol):
def __call__(
self,
params: hk.Params,
emb: jax.Array,
) -> model.CompiledTransformerModelOutput:
"""A hk-transformed forward pass through the compiled model."""
@dataclasses.dataclass
class AssembledTransformerModel:
"""Model architecture and parameters from assembling a model."""
forward: ModelForward
get_compiled_model: Callable[[], model.CompiledTransformerModel]
params: hk.Params
model_config: model.TransformerConfig
residual_labels: List[str]
input_encoder: Optional[encoder.Encoder] = None
output_encoder: Optional[encoder.Encoder] = None
def apply(self, tokens: List[bases.Value]) -> AssembledTransformerModelOutput:
"""Returns output from running the model on a set of input tokens."""
if self.input_encoder:
tokens = self.input_encoder.encode(tokens)
tokens = jnp.array([tokens])
output = self.forward(self.params, tokens)
decoded = output.unembedded_output[0].tolist()
if self.output_encoder:
decoded = self.output_encoder.decode(decoded)
if self.input_encoder.bos_token:
# Special case for decoding the bos token position, for which the output
# decoder might have unspecified behavior.
decoded = [self.input_encoder.bos_token] + decoded[1:]
return AssembledTransformerModelOutput(
decoded=decoded,
unembedded=output.unembedded_output,
layer_outputs=output.transformer_output.layer_outputs,
residuals=output.transformer_output.residuals,
attn_logits=output.transformer_output.attn_logits,
transformer_output=output.transformer_output.output,
input_embeddings=output.transformer_output.input_embeddings)
@dataclasses.dataclass
class EmbeddingModules:
"""Modules for embedding and tokens and positions and unembedding results."""
token_embed: model.CallableHaikuModule
pos_embed: model.CallableHaikuModule
unembed: model.CallableHaikuModule
def _get_model_config_and_module_names(
craft_model: transformers.SeriesWithResiduals
) -> Tuple[model.TransformerConfig, List[str]]:
"""Returns model config and locations (in params) for halflayers."""
multi_attn_heads: List[List[transformers.AttentionHead]] = []
mlps: List[transformers.MLP] = []
module_names: List[str] = []
candidate_module_names = []
for layer in range(len(craft_model.blocks)):
candidate_module_names.append(f"transformer/layer_{layer}/attn")
candidate_module_names.append(f"transformer/layer_{layer}/mlp")
candidate_module_names = iter(candidate_module_names)
for module in craft_model.blocks:
if isinstance(module, transformers.MLP):
mlps.append(module)
layer_type = "mlp"
else:
multi_attn_heads.append(list(module.as_multi().heads()))
layer_type = "attn"
# Find next layer with the necessary type. Modules in-between, that are not
# added to module_names will be disabled later by setting all weights to 0.
module_name = next(candidate_module_names)
while layer_type not in module_name:
module_name = next(candidate_module_names)
module_names.append(module_name)
num_layers = int(module_names[-1].split("_")[1].split("/")[0]) + 1
heads = sum(multi_attn_heads, [])
if multi_attn_heads:
num_heads = max(len(heads) for heads in multi_attn_heads)
key_size = max(max(head.w_qk.matrix.shape) for head in heads)
else:
num_heads, key_size = 1, 1
if mlps:
mlp_hidden_size = max(mlp.fst.output_space.num_dims for mlp in mlps)
else:
mlp_hidden_size = 1
model_config = model.TransformerConfig(
num_heads=num_heads,
num_layers=num_layers,
key_size=key_size,
mlp_hidden_size=mlp_hidden_size,
dropout_rate=0.,
activation_function=jax.nn.relu,
layer_norm=False,
causal=False,
)
return model_config, module_names
def _make_embedding_modules(
residual_space: bases.VectorSpaceWithBasis,
tokens_space: bases.VectorSpaceWithBasis,
indices_space: bases.VectorSpaceWithBasis,
output_space: bases.VectorSpaceWithBasis) -> EmbeddingModules:
"""Creates embedding and unembedding modules from vector spaces.
Args:
residual_space: Full residual space of the model.
tokens_space: Subspace to embed tokens to.
indices_space: Subspace to embed indices/position embeddings to.
output_space: Subspace to unembed outputs from.
Returns:
EmbeddingModules containing modules for token embeddings, position
embeddings and unembeddings.
"""
tokens_to_res = vectorspace_fns.project(tokens_space, residual_space)
# If we use the 'one' direction, make sure all inputs have a 1 here
one_dir = bases.BasisDirection("one")
if one_dir in residual_space:
one_to_res = vectorspace_fns.Linear.from_action(
tokens_space, residual_space,
lambda x: residual_space.vector_from_basis_direction(one_dir))
tokens_to_res = vectorspace_fns.Linear.combine_in_parallel(
[tokens_to_res, one_to_res])
# Token embeddings.
res_to_out = vectorspace_fns.project(residual_space, output_space)
token_embed = hk.Embed(
embedding_matrix=tokens_to_res.matrix, name="token_embed")
# Positional embeddings.
index_to_res = vectorspace_fns.project(indices_space, residual_space)
# The zeroth position should not have any positional embeddings,
# so we add one line of padding at the zeroth position.
pos_matrix = np.concatenate(
[np.zeros((1, residual_space.num_dims)), index_to_res.matrix], axis=0)
pos_embed = hk.Embed(embedding_matrix=pos_matrix, name="pos_embed")
def unembed(x, use_unembed_argmax):
out = x @ res_to_out.matrix
if use_unembed_argmax:
return jnp.argmax(out, axis=-1)
elif out.shape[-1] == 1:
return out.squeeze(-1)
return out
unembed_mod = hk.to_module(unembed)()
return EmbeddingModules(
token_embed=token_embed, pos_embed=pos_embed, unembed=unembed_mod)
def assemble_craft_model(
craft_model: transformers.SeriesWithResiduals,
tokens_space: bases.VectorSpaceWithBasis,
indices_space: bases.VectorSpaceWithBasis,
output_space: bases.VectorSpaceWithBasis,
categorical_output: bool,
causal: bool = False,
) -> AssembledTransformerModel:
"""Assembles the given components into a Haiku model with parameters.
Args:
craft_model: Model to assemble weights for.
tokens_space: Vectorspace to embed the input tokens to.
indices_space: Vectorspace to embed the indices to (position encodings).
output_space: Vectorspace that the model will write outputs to that should
be unembedded.
categorical_output: Whether the output is categorical. If True, we take an
argmax when unembedding.
causal: Whether to output a causally-masked model.
Returns:
An AssembledTransformerModel that contains the model and parameters of the
assembled transformer.
"""
# TODO(b/255936413): Make embeddings only retain the tokens and indices that
# are actually used.
# TODO(b/255936496): Think about enabling layer norm and reversing it somehow
model_config, module_names = _get_model_config_and_module_names(craft_model)
model_config.causal = causal
residual_space = bases.join_vector_spaces(craft_model.residual_space,
tokens_space, indices_space,
output_space)
residual_labels = [str(basis_dir) for basis_dir in residual_space.basis]
# Build model with embedding and unembedding layers
def get_compiled_model():
transformer = model.Transformer(model_config)
embed_modules = _make_embedding_modules(
residual_space=residual_space,
tokens_space=tokens_space,
indices_space=indices_space,
output_space=output_space)
return model.CompiledTransformerModel(
transformer=transformer,
token_embed=embed_modules.token_embed,
position_embed=embed_modules.pos_embed,
unembed=embed_modules.unembed,
use_unembed_argmax=categorical_output)
@hk.without_apply_rng
@hk.transform
def forward(emb):
compiled_model = get_compiled_model()
return compiled_model(emb, use_dropout=False)
params = forward.init(jax.random.PRNGKey(0), jnp.array([[1, 2, 3]]))
for key in params:
if "transformer" in key:
for par in params[key]:
params[key][par] = np.zeros_like(params[key][par])
# Assemble attention and MLP weights.
project = lambda space: vectorspace_fns.project(residual_space, space).matrix
for module_name, module in zip(module_names, craft_model.blocks):
if isinstance(module, transformers.MLP):
hidden_size = module.fst.output_space.num_dims
residual_to_fst_input = project(module.fst.input_space)
snd_output_to_residual = project(module.snd.output_space).T
params[f"{module_name}/linear_1"]["w"][:, :hidden_size] = (
residual_to_fst_input @ module.fst.matrix)
params[f"{module_name}/linear_2"]["w"][:hidden_size, :] = (
module.snd.matrix @ snd_output_to_residual)
else: # Attention module
query, key, value, linear = [], [], [], []
for head in module.as_multi().heads():
key_size = head.w_qk.matrix.shape[1]
query_mat = np.zeros((residual_space.num_dims, model_config.key_size))
residual_to_query = project(head.w_qk.left_space)
query_mat[:, :key_size] = residual_to_query @ head.w_qk.matrix
query.append(query_mat)
key_mat = np.zeros((residual_space.num_dims, model_config.key_size))
key_mat[:, :key_size] = project(head.w_qk.right_space)
key.append(key_mat)
value_size = head.w_ov.matrix.shape[1]
value_mat = np.zeros((residual_space.num_dims, model_config.key_size))
residual_to_ov_input = project(head.w_ov.input_space)
value_mat[:, :value_size] = residual_to_ov_input @ head.w_ov.matrix
value.append(value_mat)
linear_mat = np.zeros((model_config.key_size, residual_space.num_dims))
linear_mat[:value_size, :] = project(head.w_ov.output_space).T
linear.append(linear_mat)
# Fill up heads that are not used with zero weights
for _ in range(model_config.num_heads - module.as_multi().num_heads):
query.append(np.zeros_like(query[0]))
key.append(np.zeros_like(key[0]))
value.append(np.zeros_like(value[0]))
linear.append(np.zeros_like(linear[0]))
query = einops.rearrange(query,
"heads input output -> input (heads output)")
key = einops.rearrange(key, "heads input output -> input (heads output)")
value = einops.rearrange(value,
"heads input output -> input (heads output)")
linear = einops.rearrange(linear,
"heads input output -> (heads input) output")
params[f"{module_name}/query"]["w"][:, :] = query
params[f"{module_name}/key"]["w"][:, :] = key
params[f"{module_name}/value"]["w"][:, :] = value
params[f"{module_name}/linear"]["w"][:, :] = linear
params = jax.tree_util.tree_map(jnp.array, params)
return AssembledTransformerModel(
forward=forward.apply,
get_compiled_model=get_compiled_model,
params=params,
model_config=model_config,
residual_labels=residual_labels,
)
|