Spaces:
Sleeping
Sleeping
File size: 3,913 Bytes
9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 c46567d 9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inferring the vector spaces taken on by certain operations."""
import dataclasses
import itertools
from typing import Set
import networkx as nx
from tracr.compiler import nodes
from tracr.craft import bases
from tracr.rasp import rasp
from tracr.utils import errors
Node = nodes.Node
@dataclasses.dataclass
class InferBasesOutput:
graph: nx.DiGraph
def infer_bases(
graph: nx.DiGraph,
sink: Node,
vocab: Set[rasp.Value],
max_seq_len: int,
) -> None:
"""Infers in-place the possible output values and vector bases of the SOps."""
def compute_value_set(sop: rasp.SOp) -> Set[rasp.Value]:
"""Computes value set using already-computed predecessor value sets."""
if sop is rasp.tokens:
return vocab
elif sop is rasp.indices:
return set(range(max_seq_len))
elif isinstance(sop, rasp.SelectorWidth):
return set(range(0, max_seq_len + 1))
elif isinstance(sop, rasp.Full):
return {sop.fill}
elif isinstance(sop, rasp.Map):
inner_value_set = graph.nodes[sop.inner.label][nodes.VALUE_SET]
out = set()
for x in inner_value_set:
res = errors.ignoring_arithmetic_errors(sop.f)(x)
if res is not None:
out.add(res)
return out
elif isinstance(sop, rasp.SequenceMap):
f_ignore_error = errors.ignoring_arithmetic_errors(sop.f)
fst_value_set = graph.nodes[sop.fst.label][nodes.VALUE_SET]
snd_value_set = graph.nodes[sop.snd.label][nodes.VALUE_SET]
out = set()
for l, r in itertools.product(fst_value_set, snd_value_set):
res = f_ignore_error(l, r)
if res is not None:
out.add(res)
return out
elif isinstance(sop, rasp.Aggregate):
if rasp.is_categorical(sop):
# Simply pass on the value set of the underlying S-Op.
return graph.nodes[sop.sop.label][nodes.VALUE_SET]
elif rasp.is_numerical(sop):
# TODO(b/255936408): This doesn't work if we average arbitrary values.
# But most examples only average binary variables.
sop_value_set = graph.nodes[sop.sop.label][nodes.VALUE_SET]
if {int(x) for x in sop_value_set} != {0, 1}:
raise NotImplementedError(
"Attention patterns can currently only "
"average binary variables. Not:", sop_value_set)
value_set = set()
for value in sop_value_set:
for length in range(1, max_seq_len + 1):
value_set.add(value / length)
return value_set
raise ValueError(f"Unsupported S-Op: {sop}")
for node_id in nx.dfs_postorder_nodes(graph.reverse(), sink[nodes.ID]):
expr = graph.nodes[node_id][nodes.EXPR]
if not isinstance(expr, rasp.SOp):
# Only S-Ops have output vector spaces.
continue
value_set = compute_value_set(expr)
graph.nodes[node_id][nodes.VALUE_SET] = value_set
if rasp.is_categorical(expr):
out_space = bases.VectorSpaceWithBasis.from_values(expr.label, value_set)
elif rasp.is_numerical(expr):
out_space = bases.VectorSpaceWithBasis.from_names([expr.label])
else:
raise ValueError(f"Unsupported S-Op type: {expr.type}")
graph.nodes[node_id][nodes.OUTPUT_BASIS] = out_space.basis
|