File size: 6,708 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for compiler.craft_graph_to_model."""

from absl.testing import absltest
from absl.testing import parameterized
import networkx as nx
from tracr.compiler import craft_graph_to_model
from tracr.compiler import nodes
from tracr.compiler import rasp_to_graph
from tracr.craft import bases
from tracr.craft.chamber import categorical_attn
from tracr.craft.chamber import categorical_mlp
from tracr.rasp import rasp


class CraftAllocateModulesToLayersTest(parameterized.TestCase):

  def _get_dummy_block(self, block_type):
    if block_type == "ATTN":
      return categorical_attn.categorical_attn(
          query_space=bases.VectorSpaceWithBasis.from_names(["query"]),
          key_space=bases.VectorSpaceWithBasis.from_names(["bos", "key"]),
          value_space=bases.VectorSpaceWithBasis.from_names(["bos", "value"]),
          output_space=bases.VectorSpaceWithBasis.from_names(["output"]),
          bos_space=bases.VectorSpaceWithBasis.from_names(["bos"]),
          one_space=bases.VectorSpaceWithBasis.from_names(["one"]),
          attn_fn=lambda x, y: True,
      )
    elif block_type == "MLP":
      return categorical_mlp.map_categorical_mlp(
          input_space=bases.VectorSpaceWithBasis.from_names(["input"]),
          output_space=bases.VectorSpaceWithBasis.from_names(["output"]),
          operation=lambda x: x,
      )
    else:
      return None

  def test_get_longest_path_length_to_node_returns_expected_result(self):
    """Creates a graph and checks the longest path for each node."""

    # Node IDs:
    # 0 -- 1 -- 2 -- 3 ------------  4
    #               /              /
    # 5 -- 6 ---------- 7 -- 8 -- 9
    #
    # 10
    # Expected return values:
    # 0 -- 1 -- 2 -- 3 ------------  5
    #               /              /
    # 0 -- 1 ---------- 2 -- 3 -- 4
    #
    # -1

    graph = nx.DiGraph()
    node_ids = list(range(11))
    expected_results = [0, 1, 2, 3, 5, 0, 1, 2, 3, 4, -1]
    for node_id, res in zip(node_ids, expected_results):
      graph.add_node(
          node_id, **{
              nodes.ID: node_id,
              nodes.EXPR: rasp.ConstantSOp(1),
              "expected_result": res
          })
    graph.add_edge(0, 1)
    graph.add_edge(1, 2)
    graph.add_edge(2, 3)
    graph.add_edge(3, 4)
    graph.add_edge(5, 6)
    graph.add_edge(6, 7)
    graph.add_edge(7, 8)
    graph.add_edge(8, 9)
    graph.add_edge(6, 3)
    graph.add_edge(9, 4)
    sources = [graph.nodes[0], graph.nodes[5]]

    for node_id, node in graph.nodes.items():
      result = craft_graph_to_model._get_longest_path_length_to_node(
          graph, sources, node)
      self.assertEqual(result, node["expected_result"])

  def test_allocate_modules_to_layers_returns_expected_result(self):
    """Creates a graph and checks if the correct layer assignment is returned."""

    # Computation Graph:
    # INPUT -- ATTN -- MLP -- ATTN ------ MLP -- OUTPUT
    #           /           /          /
    # INPUT -- MLP --- MLP          ATTN
    #                      \      /
    #                        ATTN
    # Node IDs:
    # 0 -- 1 -- 2 -- 3 -- 4 -- 5
    #         /     /     /
    # 6 -- 7 ---- 8      9
    #               \   /
    #                10
    # Expected layer allocation:
    # -1 -- 0 -- 3 -- 4 -- 7 -- -1
    #         /     /     /
    # -1 -- 1 --- 3      6
    #               \   /
    #                 4

    graph = nx.DiGraph()
    node_ids = list(range(11))
    types = [
        "INPUT", "ATTN", "MLP", "ATTN", "MLP", "OUTPUT", "INPUT", "MLP", "MLP",
        "ATTN", "ATTN"
    ]
    expected_results = [-1, 0, 3, 4, 7, -1, -1, 1, 3, 6, 4]
    for node_id, node_type, res in zip(node_ids, types, expected_results):
      graph.add_node(
          node_id, **{
              nodes.ID: node_id,
              nodes.EXPR: rasp.ConstantSOp(1),
              nodes.MODEL_BLOCK: self._get_dummy_block(node_type),
              "expected_result": res
          })

    graph.add_edge(0, 1)
    graph.add_edge(1, 2)
    graph.add_edge(2, 3)
    graph.add_edge(3, 4)
    graph.add_edge(4, 5)
    graph.add_edge(6, 7)
    graph.add_edge(7, 2)
    graph.add_edge(7, 8)
    graph.add_edge(8, 3)
    graph.add_edge(8, 10)
    graph.add_edge(9, 4)
    graph.add_edge(10, 9)

    craft_graph = rasp_to_graph.ExtractRaspGraphOutput(
        graph=graph,
        sink=graph.nodes[10],
        sources=[graph.nodes[0], graph.nodes[6]])

    layer_allocation = craft_graph_to_model._allocate_modules_to_layers(
        craft_graph.graph, craft_graph.sources)
    for node_id, node in graph.nodes.items():
      self.assertEqual(layer_allocation[node_id], node["expected_result"])

  def test_allocate_modules_to_layers_returns_expected_result_for_chain(self):
    """Tests a chain of alternating attention layers and MLPs."""

    # Computation Graph:
    # INPUT -- ATTN -- MLP -- ATTN -- MLP -- OUTPUT
    # Node IDs:
    # 0 -- 1 -- 2 -- 3 -- 4 -- 5
    # Expected layer allocation:
    # -1 -- 0 -- 1 -- 2 -- 3 -- -1

    graph = nx.DiGraph()
    node_ids = list(range(11))
    types = ["INPUT", "ATTN", "MLP", "ATTN", "MLP", "OUTPUT"]
    expected_results = [-1, 0, 1, 2, 3, -1]
    for node_id, node_type, res in zip(node_ids, types, expected_results):
      graph.add_node(
          node_id, **{
              nodes.ID: node_id,
              nodes.EXPR: rasp.ConstantSOp(1),
              nodes.MODEL_BLOCK: self._get_dummy_block(node_type),
              "expected_result": res
          })

    graph.add_edge(0, 1)
    graph.add_edge(1, 2)
    graph.add_edge(2, 3)
    graph.add_edge(3, 4)
    graph.add_edge(4, 5)

    craft_graph = rasp_to_graph.ExtractRaspGraphOutput(
        graph=graph, sink=graph.nodes[5], sources=[graph.nodes[0]])

    layer_allocation = craft_graph_to_model._allocate_modules_to_layers(
        craft_graph.graph, craft_graph.sources)
    for node_id, node in graph.nodes.items():
      self.assertEqual(layer_allocation[node_id], node["expected_result"])


if __name__ == "__main__":
  absltest.main()