Spaces:
Sleeping
Sleeping
File size: 10,839 Bytes
9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for transformer.model."""
from absl.testing import absltest
from absl.testing import parameterized
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
from tracr.transformer import compressed_model
from tracr.transformer import model
class CompressedTransformerTest(parameterized.TestCase):
def _check_layer_naming(self, params):
# Modules should be named for example
# For MLPs: "compressed_transformer/layer_{i}/mlp/linear_1"
# For Attention: "compressed_transformer/layer_{i}/attn/key"
# For Layer Norm: "compressed_transformer/layer_{i}/layer_norm"
for key in params.keys():
levels = key.split("/")
self.assertEqual(levels[0], "compressed_transformer")
if len(levels) == 1:
self.assertEqual(list(params[key].keys()), ["w_emb"])
continue
if levels[1].startswith("layer_norm"):
continue # output layer norm
self.assertStartsWith(levels[1], "layer")
if levels[2] == "mlp":
self.assertIn(levels[3], {"linear_1", "linear_2"})
elif levels[2] == "attn":
self.assertIn(levels[3], {"key", "query", "value", "linear"})
else:
self.assertStartsWith(levels[2], "layer_norm")
def _zero_mlps(self, params):
for module in params:
if "mlp" in module:
for param in params[module]:
params[module][param] = jnp.zeros_like(params[module][param])
return params
@parameterized.parameters(dict(layer_norm=True), dict(layer_norm=False))
def test_layer_norm(self, layer_norm):
# input = [1, 1, 1, 1]
# If layer norm is used, this should give all-0 output for a freshly
# initialized model because LN will subtract the mean after each layer.
# Else we expect non-zero outputs.
@hk.transform
def forward(emb, mask):
transformer = compressed_model.CompressedTransformer(
model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
layer_norm=layer_norm))
return transformer(emb, mask).output
seq_len = 4
emb = jnp.ones((1, seq_len, 1))
mask = jnp.ones((1, seq_len))
rng = hk.PRNGSequence(1)
params = forward.init(next(rng), emb, mask)
out = forward.apply(params, next(rng), emb, mask)
self._check_layer_naming(params)
if layer_norm:
np.testing.assert_allclose(out, 0)
else:
self.assertFalse(np.allclose(out, 0))
@parameterized.parameters(dict(causal=True), dict(causal=False))
def test_causal_attention(self, causal):
# input = [0, random, random, random]
# mask = [1, 0, 1, 1]
# For causal attention the second token can only attend to the first one, so
# it should be the same. For non-causal attention all tokens should change.
@hk.transform
def forward(emb, mask):
transformer = compressed_model.CompressedTransformer(
model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
layer_norm=False,
causal=causal))
return transformer(emb, mask).output
seq_len = 4
emb = np.random.random((1, seq_len, 1))
emb[:, 0, :] = 0
mask = np.array([[1, 0, 1, 1]])
emb, mask = jnp.array(emb), jnp.array(mask)
rng = hk.PRNGSequence(1)
params = forward.init(next(rng), emb, mask)
params = self._zero_mlps(params)
out = forward.apply(params, next(rng), emb, mask)
self._check_layer_naming(params)
if causal:
self.assertEqual(0, out[0, 0, 0])
self.assertEqual(emb[0, 1, 0], out[0, 1, 0])
else:
self.assertNotEqual(0, out[0, 0, 0])
self.assertNotEqual(emb[0, 1, 0], out[0, 1, 0])
self.assertNotEqual(emb[0, 2, 0], out[0, 2, 0])
self.assertNotEqual(emb[0, 3, 0], out[0, 3, 0])
def test_setting_activation_function_to_zero(self):
# An activation function that always returns zeros should result in the
# same model output as setting all MLP weights to zero.
@hk.transform
def forward_zero(emb, mask):
transformer = compressed_model.CompressedTransformer(
model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
causal=False,
layer_norm=False,
activation_function=jnp.zeros_like))
return transformer(emb, mask).output
@hk.transform
def forward(emb, mask):
transformer = compressed_model.CompressedTransformer(
model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
causal=False,
layer_norm=False,
activation_function=jax.nn.gelu))
return transformer(emb, mask).output
seq_len = 4
emb = np.random.random((1, seq_len, 1))
mask = np.ones((1, seq_len))
emb, mask = jnp.array(emb), jnp.array(mask)
rng = hk.PRNGSequence(1)
params = forward.init(next(rng), emb, mask)
params_no_mlps = self._zero_mlps(params)
out_zero_activation = forward_zero.apply(params, next(rng), emb, mask)
out_no_mlps = forward.apply(params_no_mlps, next(rng), emb, mask)
self._check_layer_naming(params)
np.testing.assert_allclose(out_zero_activation, out_no_mlps)
self.assertFalse(np.allclose(out_zero_activation, 0))
def test_not_setting_embedding_size_produces_same_output_as_default_model(
self):
config = model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
causal=False,
layer_norm=False)
@hk.without_apply_rng
@hk.transform
def forward_model(emb, mask):
return model.Transformer(config)(emb, mask).output
@hk.without_apply_rng
@hk.transform
def forward_superposition(emb, mask):
return compressed_model.CompressedTransformer(config)(emb, mask).output
seq_len = 4
emb = np.random.random((1, seq_len, 1))
mask = np.ones((1, seq_len))
emb, mask = jnp.array(emb), jnp.array(mask)
rng = hk.PRNGSequence(1)
params = forward_model.init(next(rng), emb, mask)
params_superposition = {
k.replace("transformer", "compressed_transformer"): v
for k, v in params.items()
}
out_model = forward_model.apply(params, emb, mask)
out_superposition = forward_superposition.apply(params_superposition, emb,
mask)
self._check_layer_naming(params_superposition)
np.testing.assert_allclose(out_model, out_superposition)
@parameterized.parameters(
dict(embedding_size=2, unembed_at_every_layer=True),
dict(embedding_size=2, unembed_at_every_layer=False),
dict(embedding_size=6, unembed_at_every_layer=True),
dict(embedding_size=6, unembed_at_every_layer=False))
def test_embbeding_size_produces_correct_shape_of_residuals_and_layer_outputs(
self, embedding_size, unembed_at_every_layer):
@hk.transform
def forward(emb, mask):
transformer = compressed_model.CompressedTransformer(
model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
causal=False,
layer_norm=False))
return transformer(
emb,
mask,
embedding_size=embedding_size,
unembed_at_every_layer=unembed_at_every_layer,
)
seq_len = 4
model_size = 16
emb = np.random.random((1, seq_len, model_size))
mask = np.ones((1, seq_len))
emb, mask = jnp.array(emb), jnp.array(mask)
rng = hk.PRNGSequence(1)
params = forward.init(next(rng), emb, mask)
activations = forward.apply(params, next(rng), emb, mask)
self._check_layer_naming(params)
for residual in activations.residuals:
self.assertEqual(residual.shape, (1, seq_len, embedding_size))
for layer_output in activations.layer_outputs:
self.assertEqual(layer_output.shape, (1, seq_len, model_size))
@parameterized.parameters(
dict(model_size=2, unembed_at_every_layer=True),
dict(model_size=2, unembed_at_every_layer=False),
dict(model_size=6, unembed_at_every_layer=True),
dict(model_size=6, unembed_at_every_layer=False))
def test_identity_embedding_produces_same_output_as_standard_model(
self, model_size, unembed_at_every_layer):
config = model.TransformerConfig(
num_heads=2,
num_layers=2,
key_size=5,
mlp_hidden_size=64,
dropout_rate=0.,
causal=False,
layer_norm=False)
@hk.without_apply_rng
@hk.transform
def forward_model(emb, mask):
return model.Transformer(config)(emb, mask).output
@hk.without_apply_rng
@hk.transform
def forward_superposition(emb, mask):
return compressed_model.CompressedTransformer(config)(
emb,
mask,
embedding_size=model_size,
unembed_at_every_layer=unembed_at_every_layer).output
seq_len = 4
emb = np.random.random((1, seq_len, model_size))
mask = np.ones((1, seq_len))
emb, mask = jnp.array(emb), jnp.array(mask)
rng = hk.PRNGSequence(1)
params = forward_model.init(next(rng), emb, mask)
params_superposition = {
k.replace("transformer", "compressed_transformer"): v
for k, v in params.items()
}
params_superposition["compressed_transformer"] = {
"w_emb": jnp.identity(model_size)
}
out_model = forward_model.apply(params, emb, mask)
out_superposition = forward_superposition.apply(params_superposition, emb,
mask)
self._check_layer_naming(params_superposition)
np.testing.assert_allclose(out_model, out_superposition)
if __name__ == "__main__":
absltest.main()
|