File size: 10,839 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for transformer.model."""

from absl.testing import absltest
from absl.testing import parameterized
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
from tracr.transformer import compressed_model
from tracr.transformer import model


class CompressedTransformerTest(parameterized.TestCase):

  def _check_layer_naming(self, params):
    # Modules should be named for example
    # For MLPs: "compressed_transformer/layer_{i}/mlp/linear_1"
    # For Attention: "compressed_transformer/layer_{i}/attn/key"
    # For Layer Norm: "compressed_transformer/layer_{i}/layer_norm"
    for key in params.keys():
      levels = key.split("/")
      self.assertEqual(levels[0], "compressed_transformer")
      if len(levels) == 1:
        self.assertEqual(list(params[key].keys()), ["w_emb"])
        continue
      if levels[1].startswith("layer_norm"):
        continue  # output layer norm
      self.assertStartsWith(levels[1], "layer")
      if levels[2] == "mlp":
        self.assertIn(levels[3], {"linear_1", "linear_2"})
      elif levels[2] == "attn":
        self.assertIn(levels[3], {"key", "query", "value", "linear"})
      else:
        self.assertStartsWith(levels[2], "layer_norm")

  def _zero_mlps(self, params):
    for module in params:
      if "mlp" in module:
        for param in params[module]:
          params[module][param] = jnp.zeros_like(params[module][param])
    return params

  @parameterized.parameters(dict(layer_norm=True), dict(layer_norm=False))
  def test_layer_norm(self, layer_norm):
    # input = [1, 1, 1, 1]
    # If layer norm is used, this should give all-0 output for a freshly
    # initialized model because LN will subtract the mean after each layer.
    # Else we expect non-zero outputs.

    @hk.transform
    def forward(emb, mask):
      transformer = compressed_model.CompressedTransformer(
          model.TransformerConfig(
              num_heads=2,
              num_layers=2,
              key_size=5,
              mlp_hidden_size=64,
              dropout_rate=0.,
              layer_norm=layer_norm))
      return transformer(emb, mask).output

    seq_len = 4
    emb = jnp.ones((1, seq_len, 1))
    mask = jnp.ones((1, seq_len))
    rng = hk.PRNGSequence(1)
    params = forward.init(next(rng), emb, mask)
    out = forward.apply(params, next(rng), emb, mask)

    self._check_layer_naming(params)
    if layer_norm:
      np.testing.assert_allclose(out, 0)
    else:
      self.assertFalse(np.allclose(out, 0))

  @parameterized.parameters(dict(causal=True), dict(causal=False))
  def test_causal_attention(self, causal):
    # input = [0, random, random, random]
    # mask = [1, 0, 1, 1]
    # For causal attention the second token can only attend to the first one, so
    # it should be the same. For non-causal attention all tokens should change.

    @hk.transform
    def forward(emb, mask):
      transformer = compressed_model.CompressedTransformer(
          model.TransformerConfig(
              num_heads=2,
              num_layers=2,
              key_size=5,
              mlp_hidden_size=64,
              dropout_rate=0.,
              layer_norm=False,
              causal=causal))
      return transformer(emb, mask).output

    seq_len = 4
    emb = np.random.random((1, seq_len, 1))
    emb[:, 0, :] = 0
    mask = np.array([[1, 0, 1, 1]])
    emb, mask = jnp.array(emb), jnp.array(mask)

    rng = hk.PRNGSequence(1)
    params = forward.init(next(rng), emb, mask)
    params = self._zero_mlps(params)
    out = forward.apply(params, next(rng), emb, mask)

    self._check_layer_naming(params)
    if causal:
      self.assertEqual(0, out[0, 0, 0])
      self.assertEqual(emb[0, 1, 0], out[0, 1, 0])
    else:
      self.assertNotEqual(0, out[0, 0, 0])
      self.assertNotEqual(emb[0, 1, 0], out[0, 1, 0])
    self.assertNotEqual(emb[0, 2, 0], out[0, 2, 0])
    self.assertNotEqual(emb[0, 3, 0], out[0, 3, 0])

  def test_setting_activation_function_to_zero(self):
    # An activation function that always returns zeros should result in the
    # same model output as setting all MLP weights to zero.

    @hk.transform
    def forward_zero(emb, mask):
      transformer = compressed_model.CompressedTransformer(
          model.TransformerConfig(
              num_heads=2,
              num_layers=2,
              key_size=5,
              mlp_hidden_size=64,
              dropout_rate=0.,
              causal=False,
              layer_norm=False,
              activation_function=jnp.zeros_like))
      return transformer(emb, mask).output

    @hk.transform
    def forward(emb, mask):
      transformer = compressed_model.CompressedTransformer(
          model.TransformerConfig(
              num_heads=2,
              num_layers=2,
              key_size=5,
              mlp_hidden_size=64,
              dropout_rate=0.,
              causal=False,
              layer_norm=False,
              activation_function=jax.nn.gelu))
      return transformer(emb, mask).output

    seq_len = 4
    emb = np.random.random((1, seq_len, 1))
    mask = np.ones((1, seq_len))
    emb, mask = jnp.array(emb), jnp.array(mask)

    rng = hk.PRNGSequence(1)
    params = forward.init(next(rng), emb, mask)
    params_no_mlps = self._zero_mlps(params)

    out_zero_activation = forward_zero.apply(params, next(rng), emb, mask)
    out_no_mlps = forward.apply(params_no_mlps, next(rng), emb, mask)

    self._check_layer_naming(params)
    np.testing.assert_allclose(out_zero_activation, out_no_mlps)
    self.assertFalse(np.allclose(out_zero_activation, 0))

  def test_not_setting_embedding_size_produces_same_output_as_default_model(
      self):
    config = model.TransformerConfig(
        num_heads=2,
        num_layers=2,
        key_size=5,
        mlp_hidden_size=64,
        dropout_rate=0.,
        causal=False,
        layer_norm=False)

    @hk.without_apply_rng
    @hk.transform
    def forward_model(emb, mask):
      return model.Transformer(config)(emb, mask).output

    @hk.without_apply_rng
    @hk.transform
    def forward_superposition(emb, mask):
      return compressed_model.CompressedTransformer(config)(emb, mask).output

    seq_len = 4
    emb = np.random.random((1, seq_len, 1))
    mask = np.ones((1, seq_len))
    emb, mask = jnp.array(emb), jnp.array(mask)

    rng = hk.PRNGSequence(1)
    params = forward_model.init(next(rng), emb, mask)
    params_superposition = {
        k.replace("transformer", "compressed_transformer"): v
        for k, v in params.items()
    }

    out_model = forward_model.apply(params, emb, mask)
    out_superposition = forward_superposition.apply(params_superposition, emb,
                                                    mask)

    self._check_layer_naming(params_superposition)
    np.testing.assert_allclose(out_model, out_superposition)

  @parameterized.parameters(
      dict(embedding_size=2, unembed_at_every_layer=True),
      dict(embedding_size=2, unembed_at_every_layer=False),
      dict(embedding_size=6, unembed_at_every_layer=True),
      dict(embedding_size=6, unembed_at_every_layer=False))
  def test_embbeding_size_produces_correct_shape_of_residuals_and_layer_outputs(
      self, embedding_size, unembed_at_every_layer):

    @hk.transform
    def forward(emb, mask):
      transformer = compressed_model.CompressedTransformer(
          model.TransformerConfig(
              num_heads=2,
              num_layers=2,
              key_size=5,
              mlp_hidden_size=64,
              dropout_rate=0.,
              causal=False,
              layer_norm=False))
      return transformer(
          emb,
          mask,
          embedding_size=embedding_size,
          unembed_at_every_layer=unembed_at_every_layer,
      )

    seq_len = 4
    model_size = 16

    emb = np.random.random((1, seq_len, model_size))
    mask = np.ones((1, seq_len))
    emb, mask = jnp.array(emb), jnp.array(mask)

    rng = hk.PRNGSequence(1)
    params = forward.init(next(rng), emb, mask)
    activations = forward.apply(params, next(rng), emb, mask)

    self._check_layer_naming(params)

    for residual in activations.residuals:
      self.assertEqual(residual.shape, (1, seq_len, embedding_size))

    for layer_output in activations.layer_outputs:
      self.assertEqual(layer_output.shape, (1, seq_len, model_size))

  @parameterized.parameters(
      dict(model_size=2, unembed_at_every_layer=True),
      dict(model_size=2, unembed_at_every_layer=False),
      dict(model_size=6, unembed_at_every_layer=True),
      dict(model_size=6, unembed_at_every_layer=False))
  def test_identity_embedding_produces_same_output_as_standard_model(
      self, model_size, unembed_at_every_layer):

    config = model.TransformerConfig(
        num_heads=2,
        num_layers=2,
        key_size=5,
        mlp_hidden_size=64,
        dropout_rate=0.,
        causal=False,
        layer_norm=False)

    @hk.without_apply_rng
    @hk.transform
    def forward_model(emb, mask):
      return model.Transformer(config)(emb, mask).output

    @hk.without_apply_rng
    @hk.transform
    def forward_superposition(emb, mask):
      return compressed_model.CompressedTransformer(config)(
          emb,
          mask,
          embedding_size=model_size,
          unembed_at_every_layer=unembed_at_every_layer).output

    seq_len = 4
    emb = np.random.random((1, seq_len, model_size))
    mask = np.ones((1, seq_len))
    emb, mask = jnp.array(emb), jnp.array(mask)

    rng = hk.PRNGSequence(1)
    params = forward_model.init(next(rng), emb, mask)
    params_superposition = {
        k.replace("transformer", "compressed_transformer"): v
        for k, v in params.items()
    }
    params_superposition["compressed_transformer"] = {
        "w_emb": jnp.identity(model_size)
    }

    out_model = forward_model.apply(params, emb, mask)
    out_superposition = forward_superposition.apply(params_superposition, emb,
                                                    mask)

    self._check_layer_naming(params_superposition)
    np.testing.assert_allclose(out_model, out_superposition)


if __name__ == "__main__":
  absltest.main()