RASP-Synthesis / compiler /rasp_to_craft_integration_test.py
DeepMind LMI Team
Internal change
9bdaa77
raw
history blame
9.35 kB
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Integration tests for the RASP -> craft stages of the compiler."""
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from tracr.compiler import basis_inference
from tracr.compiler import craft_graph_to_model
from tracr.compiler import expr_to_craft_graph
from tracr.compiler import nodes
from tracr.compiler import rasp_to_graph
from tracr.compiler import test_cases
from tracr.craft import bases
from tracr.craft import tests_common
from tracr.rasp import rasp
_BOS_DIRECTION = "rasp_to_transformer_integration_test_BOS"
_ONE_DIRECTION = "rasp_to_craft_integration_test_ONE"
def _make_input_space(vocab, max_seq_len):
tokens_space = bases.VectorSpaceWithBasis.from_values("tokens", vocab)
indices_space = bases.VectorSpaceWithBasis.from_values(
"indices", range(max_seq_len))
one_space = bases.VectorSpaceWithBasis.from_names([_ONE_DIRECTION])
bos_space = bases.VectorSpaceWithBasis.from_names([_BOS_DIRECTION])
input_space = bases.join_vector_spaces(tokens_space, indices_space, one_space,
bos_space)
return input_space
def _embed_input(input_seq, input_space):
bos_vec = input_space.vector_from_basis_direction(
bases.BasisDirection(_BOS_DIRECTION))
one_vec = input_space.vector_from_basis_direction(
bases.BasisDirection(_ONE_DIRECTION))
embedded_input = [bos_vec + one_vec]
for i, val in enumerate(input_seq):
i_vec = input_space.vector_from_basis_direction(
bases.BasisDirection("indices", i))
val_vec = input_space.vector_from_basis_direction(
bases.BasisDirection("tokens", val))
embedded_input.append(i_vec + val_vec + one_vec)
return bases.VectorInBasis.stack(embedded_input)
def _embed_output(output_seq, output_space, categorical_output):
embedded_output = []
output_label = output_space.basis[0].name
for x in output_seq:
if x is None:
out_vec = output_space.null_vector()
elif categorical_output:
out_vec = output_space.vector_from_basis_direction(
bases.BasisDirection(output_label, x))
else:
out_vec = x * output_space.vector_from_basis_direction(
output_space.basis[0])
embedded_output.append(out_vec)
return bases.VectorInBasis.stack(embedded_output)
class CompilerIntegrationTest(tests_common.VectorFnTestCase):
@parameterized.named_parameters(
dict(
testcase_name="map",
program=rasp.categorical(rasp.Map(lambda x: x + 1, rasp.tokens))),
dict(
testcase_name="sequence_map",
program=rasp.categorical(
rasp.SequenceMap(lambda x, y: x + y, rasp.tokens, rasp.indices))),
dict(
testcase_name="sequence_map_with_same_input",
program=rasp.categorical(
rasp.SequenceMap(lambda x, y: x + y, rasp.tokens, rasp.tokens))),
dict(
testcase_name="select_aggregate",
program=rasp.Aggregate(
rasp.Select(rasp.tokens, rasp.tokens, rasp.Comparison.EQ),
rasp.Map(lambda x: 1, rasp.tokens))))
def test_rasp_program_and_craft_model_produce_same_output(self, program):
vocab = {0, 1, 2}
max_seq_len = 3
extracted = rasp_to_graph.extract_rasp_graph(program)
basis_inference.infer_bases(
extracted.graph,
extracted.sink,
vocab,
max_seq_len=max_seq_len,
)
expr_to_craft_graph.add_craft_components_to_rasp_graph(
extracted.graph,
bos_dir=bases.BasisDirection(_BOS_DIRECTION),
one_dir=bases.BasisDirection(_ONE_DIRECTION),
)
model = craft_graph_to_model.craft_graph_to_model(extracted.graph,
extracted.sources)
input_space = _make_input_space(vocab, max_seq_len)
output_space = bases.VectorSpaceWithBasis(
extracted.sink[nodes.OUTPUT_BASIS])
for val in vocab:
test_input = _embed_input([val], input_space)
rasp_output = program([val])
expected_output = _embed_output(
output_seq=rasp_output,
output_space=output_space,
categorical_output=True)
test_output = model.apply(test_input).project(output_space)
self.assertVectorAllClose(
tests_common.strip_bos_token(test_output), expected_output)
@parameterized.named_parameters(*test_cases.TEST_CASES)
def test_compiled_models_produce_expected_output(self, program, vocab,
test_input, expected_output,
max_seq_len, **kwargs):
del kwargs
categorical_output = rasp.is_categorical(program)
extracted = rasp_to_graph.extract_rasp_graph(program)
basis_inference.infer_bases(
extracted.graph,
extracted.sink,
vocab,
max_seq_len=max_seq_len,
)
expr_to_craft_graph.add_craft_components_to_rasp_graph(
extracted.graph,
bos_dir=bases.BasisDirection(_BOS_DIRECTION),
one_dir=bases.BasisDirection(_ONE_DIRECTION),
)
model = craft_graph_to_model.craft_graph_to_model(extracted.graph,
extracted.sources)
input_space = _make_input_space(vocab, max_seq_len)
output_space = bases.VectorSpaceWithBasis(
extracted.sink[nodes.OUTPUT_BASIS])
if not categorical_output:
self.assertLen(output_space.basis, 1)
test_input_vector = _embed_input(test_input, input_space)
expected_output_vector = _embed_output(
output_seq=expected_output,
output_space=output_space,
categorical_output=categorical_output)
test_output = model.apply(test_input_vector).project(output_space)
self.assertVectorAllClose(
tests_common.strip_bos_token(test_output), expected_output_vector)
@unittest.expectedFailure
def test_setting_default_values_can_lead_to_wrong_outputs_in_compiled_model(
self, program):
# This is an example program in which setting a default value for aggregate
# writes a value to the bos token position, which interfers with a later
# aggregate operation causing the compiled model to have the wrong output.
vocab = {"a", "b"}
test_input = ["a"]
max_seq_len = 2
# RASP: [False, True]
# compiled: [False, False, True]
not_a = rasp.Map(lambda x: x != "a", rasp.tokens)
# RASP:
# [[True, False],
# [False, False]]
# compiled:
# [[False,True, False],
# [True, False, False]]
sel1 = rasp.Select(rasp.tokens, rasp.tokens,
lambda k, q: k == "a" and q == "a")
# RASP: [False, True]
# compiled: [True, False, True]
agg1 = rasp.Aggregate(sel1, not_a, default=True)
# RASP:
# [[False, True]
# [True, True]]
# compiled:
# [[True, False, False]
# [True, False, False]]
# because pre-softmax we get
# [[1.5, 1, 1]
# [1.5, 1, 1]]
# instead of
# [[0.5, 1, 1]
# [0.5, 1, 1]]
# Because agg1 = True is stored on the BOS token position
sel2 = rasp.Select(agg1, agg1, lambda k, q: k or q)
# RASP: [1, 0.5]
# compiled
# [1, 1, 1]
program = rasp.numerical(
rasp.Aggregate(sel2, rasp.numerical(not_a), default=1))
expected_output = [1, 0.5]
# RASP program gives the correct output
program_output = program(test_input)
np.testing.assert_allclose(program_output, expected_output)
extracted = rasp_to_graph.extract_rasp_graph(program)
basis_inference.infer_bases(
extracted.graph,
extracted.sink,
vocab,
max_seq_len=max_seq_len,
)
expr_to_craft_graph.add_craft_components_to_rasp_graph(
extracted.graph,
bos_dir=bases.BasisDirection(_BOS_DIRECTION),
one_dir=bases.BasisDirection(_ONE_DIRECTION),
)
model = craft_graph_to_model.craft_graph_to_model(extracted.graph,
extracted.sources)
input_space = _make_input_space(vocab, max_seq_len)
output_space = bases.VectorSpaceWithBasis(
extracted.sink[nodes.OUTPUT_BASIS])
test_input_vector = _embed_input(test_input, input_space)
expected_output_vector = _embed_output(
output_seq=expected_output,
output_space=output_space,
categorical_output=True)
compiled_model_output = model.apply(test_input_vector).project(output_space)
# Compiled craft model gives correct output
self.assertVectorAllClose(
tests_common.strip_bos_token(compiled_model_output),
expected_output_vector)
if __name__ == "__main__":
absltest.main()