Spaces:
Sleeping
Sleeping
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for compiler.basis_inference.""" | |
from absl.testing import absltest | |
from absl.testing import parameterized | |
from tracr.compiler import basis_inference | |
from tracr.compiler import nodes | |
from tracr.compiler import rasp_to_graph | |
from tracr.rasp import rasp | |
class InferBasesTest(parameterized.TestCase): | |
def test_arithmetic_error_logs_warning(self): | |
program = rasp.numerical(rasp.Map(lambda x: 1 / x, rasp.tokens)) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
vocab = {0, 1, 2} | |
with self.assertLogs(level="WARNING"): | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
vocab, | |
max_seq_len=1, | |
) | |
def test_one_edge(self, vocab, expected_value_set): | |
program = rasp.categorical(rasp.Map(lambda x: x + 1, rasp.tokens)) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
vocab, | |
max_seq_len=1, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[program.label][nodes.VALUE_SET], | |
expected_value_set, | |
) | |
def test_primitive_close_to_tip(self): | |
intermediate = rasp.categorical(rasp.tokens + 1) | |
intermediate = rasp.categorical(intermediate + intermediate) | |
program = rasp.categorical(intermediate + rasp.indices) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
{0, 1}, | |
max_seq_len=2, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[program.label][nodes.VALUE_SET], | |
{2, 3, 4, 5}, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[intermediate.label][nodes.VALUE_SET], | |
{2, 3, 4}, | |
) | |
def test_categorical_aggregate(self): | |
program = rasp.categorical( | |
rasp.Aggregate( | |
rasp.Select(rasp.tokens, rasp.indices, rasp.Comparison.EQ), | |
rasp.indices, | |
)) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
{0, 1}, | |
max_seq_len=3, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[program.label][nodes.VALUE_SET], | |
{0, 1, 2}, | |
) | |
def test_numerical_aggregate(self): | |
program = rasp.numerical( | |
rasp.Aggregate( | |
rasp.Select(rasp.tokens, rasp.indices, rasp.Comparison.EQ), | |
rasp.indices, | |
)) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
{0, 1}, | |
max_seq_len=2, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[program.label][nodes.VALUE_SET], | |
{0, 1, 1 / 2}, | |
) | |
def test_selector_width(self): | |
program = rasp.SelectorWidth( | |
rasp.Select(rasp.tokens, rasp.indices, rasp.Comparison.EQ)) | |
extracted = rasp_to_graph.extract_rasp_graph(program) | |
basis_inference.infer_bases( | |
extracted.graph, | |
extracted.sink, | |
{0, 1}, | |
max_seq_len=2, | |
) | |
self.assertSetEqual( | |
extracted.graph.nodes[program.label][nodes.VALUE_SET], | |
{0, 1, 2}, | |
) | |
if __name__ == "__main__": | |
absltest.main() | |