Spaces:
Sleeping
Sleeping
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for chamber.numerical_mlp.""" | |
from absl.testing import absltest | |
from absl.testing import parameterized | |
import numpy as np | |
from tracr.craft import bases | |
from tracr.craft import tests_common | |
from tracr.craft.chamber import numerical_mlp | |
from tracr.utils import errors | |
class NumericalMlpTest(tests_common.VectorFnTestCase): | |
def test_map_numerical_mlp_produces_expected_outcome(self, in_value_set, x, | |
function, result): | |
input_dir = bases.BasisDirection("input") | |
output_dir = bases.BasisDirection("output") | |
one_dir = bases.BasisDirection("one") | |
input_space = bases.VectorSpaceWithBasis([input_dir]) | |
output_space = bases.VectorSpaceWithBasis([output_dir]) | |
one_space = bases.VectorSpaceWithBasis([one_dir]) | |
mlp = numerical_mlp.map_numerical_mlp( | |
f=function, | |
input_space=input_space, | |
output_space=output_space, | |
one_space=one_space, | |
input_value_set=in_value_set, | |
) | |
test_inputs = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir, one_dir], | |
magnitudes=np.array([x, 0, 1])) | |
expected_results = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir, one_dir], | |
magnitudes=np.array([0, result, 0])) | |
test_outputs = mlp.apply(test_inputs) | |
self.assertVectorAllClose(test_outputs, expected_results) | |
def test_map_numerical_mlp_logs_warning_and_produces_expected_outcome( | |
self, in_value_set, x, function, result): | |
input_dir = bases.BasisDirection("input") | |
output_dir = bases.BasisDirection("output") | |
one_dir = bases.BasisDirection("one") | |
input_space = bases.VectorSpaceWithBasis([input_dir]) | |
output_space = bases.VectorSpaceWithBasis([output_dir]) | |
one_space = bases.VectorSpaceWithBasis([one_dir]) | |
with self.assertLogs(level="WARNING"): | |
mlp = numerical_mlp.map_numerical_mlp( | |
f=function, | |
input_space=input_space, | |
output_space=output_space, | |
one_space=one_space, | |
input_value_set=in_value_set, | |
) | |
test_inputs = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir, one_dir], | |
magnitudes=np.array([x, 0, 1])) | |
expected_results = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir, one_dir], | |
magnitudes=np.array([0, result, 0])) | |
test_outputs = mlp.apply(test_inputs) | |
self.assertVectorAllClose(test_outputs, expected_results) | |
def test_map_numerical_to_categorical_mlp_logs_warning_and_produces_expected_outcome( | |
self, in_value_set, x, function, result): | |
f_ign = errors.ignoring_arithmetic_errors(function) | |
out_value_set = {f_ign(x) for x in in_value_set if f_ign(x) is not None} | |
in_space = bases.VectorSpaceWithBasis.from_names(["input"]) | |
out_space = bases.VectorSpaceWithBasis.from_values("output", out_value_set) | |
one_space = bases.VectorSpaceWithBasis.from_names(["one"]) | |
residual_space = bases.join_vector_spaces(in_space, one_space, out_space) | |
in_vec = residual_space.vector_from_basis_direction(in_space.basis[0]) | |
one_vec = residual_space.vector_from_basis_direction(one_space.basis[0]) | |
with self.assertLogs(level="WARNING"): | |
mlp = numerical_mlp.map_numerical_to_categorical_mlp( | |
f=function, | |
input_space=in_space, | |
output_space=out_space, | |
input_value_set=in_value_set, | |
one_space=one_space, | |
) | |
test_inputs = x * in_vec + one_vec | |
expected_results = out_space.vector_from_basis_direction( | |
bases.BasisDirection("output", result)) | |
test_outputs = mlp.apply(test_inputs).project(out_space) | |
self.assertVectorAllClose(test_outputs, expected_results) | |
def test_linear_sequence_map_produces_expected_result(self, x_factor, | |
y_factor, x, y, result): | |
input1_dir = bases.BasisDirection("input1") | |
input2_dir = bases.BasisDirection("input2") | |
output_dir = bases.BasisDirection("output") | |
mlp = numerical_mlp.linear_sequence_map_numerical_mlp( | |
input1_basis_direction=input1_dir, | |
input2_basis_direction=input2_dir, | |
output_basis_direction=output_dir, | |
input1_factor=x_factor, | |
input2_factor=y_factor) | |
test_inputs = bases.VectorInBasis( | |
basis_directions=[input1_dir, input2_dir, output_dir], | |
magnitudes=np.array([x, y, 0])) | |
expected_results = bases.VectorInBasis( | |
basis_directions=[input1_dir, input2_dir, output_dir], | |
magnitudes=np.array([0, 0, result])) | |
test_outputs = mlp.apply(test_inputs) | |
self.assertVectorAllClose(test_outputs, expected_results) | |
def test_linear_sequence_map_produces_expected_result_with_same_inputs( | |
self, x_factor, y_factor, x, result): | |
input_dir = bases.BasisDirection("input") | |
output_dir = bases.BasisDirection("output") | |
mlp = numerical_mlp.linear_sequence_map_numerical_mlp( | |
input1_basis_direction=input_dir, | |
input2_basis_direction=input_dir, | |
output_basis_direction=output_dir, | |
input1_factor=x_factor, | |
input2_factor=y_factor) | |
test_inputs = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir], magnitudes=np.array([x, 0])) | |
expected_results = bases.VectorInBasis( | |
basis_directions=[input_dir, output_dir], | |
magnitudes=np.array([0, result])) | |
test_outputs = mlp.apply(test_inputs) | |
self.assertVectorAllClose(test_outputs, expected_results) | |
if __name__ == "__main__": | |
absltest.main() | |