Spaces:
Sleeping
Sleeping
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for transformer.encoder.""" | |
from absl.testing import absltest | |
from absl.testing import parameterized | |
from tracr.craft import bases | |
from tracr.transformer import encoder | |
_BOS_TOKEN = "bos_encoder_test" | |
_PAD_TOKEN = "pad_encoder_test" | |
class CategoricalEncoderTest(parameterized.TestCase): | |
def test_encode_raises_value_error_if_input_doesnt_start_with_bos(self): | |
vs = bases.VectorSpaceWithBasis.from_values("input", {1, 2, 3, _BOS_TOKEN}) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN) | |
with self.assertRaisesRegex(ValueError, | |
r"^.*First input token must be BOS token.*$"): | |
basic_encoder.encode([1, 1, 1]) | |
def test_encode_raises_value_error_if_input_not_in_vocab(self): | |
vs = bases.VectorSpaceWithBasis.from_values("input", {1, 2, 3, _BOS_TOKEN}) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN) | |
with self.assertRaisesRegex(ValueError, | |
r"^.*Inputs .* not found in encoding.*$"): | |
basic_encoder.encode([_BOS_TOKEN, 1, 2, 3, 4]) | |
def test_decode_raises_value_error_if_id_outside_of_vocab_size(self): | |
vs = bases.VectorSpaceWithBasis.from_values("input", {1, 2, _BOS_TOKEN}) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN) | |
with self.assertRaisesRegex(ValueError, | |
r"^.*Inputs .* not found in decoding map.*$"): | |
basic_encoder.decode([0, 1, 2, 3]) | |
def test_encoder_raises_value_error_if_bos_not_in_basis(self): | |
vs = bases.VectorSpaceWithBasis.from_values("input", {1, 2, 3}) | |
with self.assertRaisesRegex(ValueError, | |
r"^.*BOS token missing in encoding.*$"): | |
unused_basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, bos_token=_BOS_TOKEN) | |
def test_encoder_raises_value_error_if_pad_not_in_basis(self): | |
vs = bases.VectorSpaceWithBasis.from_values("input", {1, 2, 3}) | |
with self.assertRaisesRegex(ValueError, | |
r"^.*PAD token missing in encoding.*$"): | |
unused_basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, pad_token=_PAD_TOKEN) | |
def test_encoder_encodes_bos_and_pad_tokens_as_expected(self): | |
vs = bases.VectorSpaceWithBasis.from_values( | |
"input", {1, 2, 3, _BOS_TOKEN, _PAD_TOKEN}) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, bos_token=_BOS_TOKEN, pad_token=_PAD_TOKEN) | |
self.assertEqual( | |
basic_encoder.encode([_BOS_TOKEN, _PAD_TOKEN]), | |
[basic_encoder.bos_encoding, basic_encoder.pad_encoding]) | |
def test_tokens_are_encoded_in_lexicographic_order(self, vocab, inputs, | |
expected): | |
# Expect encodings to be assigned to ids according to a lexicographic | |
# ordering of the vocab | |
vs = bases.VectorSpaceWithBasis.from_values("input", vocab) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN) | |
encodings = basic_encoder.encode(inputs) | |
self.assertEqual(encodings, expected) | |
def test_vocab_size_has_expected_value(self, vocab, expected): | |
vs = bases.VectorSpaceWithBasis.from_values("input", vocab) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN, pad_token=_PAD_TOKEN) | |
self.assertEqual(basic_encoder.vocab_size, expected) | |
def test_decode_inverts_encode(self, vocab, inputs): | |
vs = bases.VectorSpaceWithBasis.from_values("input", vocab) | |
basic_encoder = encoder.CategoricalEncoder( | |
vs.basis, enforce_bos=True, bos_token=_BOS_TOKEN, pad_token=_PAD_TOKEN) | |
encodings = basic_encoder.encode(inputs) | |
recovered = basic_encoder.decode(encodings) | |
self.assertEqual(recovered, inputs) | |
if __name__ == "__main__": | |
absltest.main() | |