tareknaous's picture
Update app.py
2e7c2d1
raw
history blame
6.51 kB
import math
import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy import ndimage
from skimage import measure, color, io
from tensorflow.keras.preprocessing import image
from scipy import ndimage
import skimage.io as io
import skimage.transform as trans
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub.keras_mixin import from_pretrained_keras
#Function that predicts on only 1 sample
def predict_sample(image):
prediction = model.predict(image[tf.newaxis, ...])
prediction[prediction > 0.5 ] = 1
prediction[prediction !=1] = 0
result = prediction[0]*255
return result
def create_input_image(data, visualize=False):
#Initialize input matrix
input = np.ones((256,256))
#Fill matrix with data point values
for i in range(0,len(data)):
if math.floor(data[i][0]) < 256 and math.floor(data[i][1]) < 256:
input[math.floor(data[i][0])][math.floor(data[i][1])] = 0
elif math.floor(data[i][0]) >= 256:
input[255][math.floor(data[i][1])] = 0
elif math.floor(data[i][1]) >= 256:
input[math.floor(data[i][0])][255] = 0
#Visualize
if visualize == True:
plt.imshow(input.T, cmap='gray')
plt.gca().invert_yaxis()
return input
model= from_pretrained_keras("tareknaous/unet-visual-clustering")
def get_instances(prediction, data, max_filter_size=1):
#Adjust format (clusters to be 255 and rest is 0)
prediction[prediction == 255] = 3
prediction[prediction == 0] = 4
prediction[prediction == 3] = 0
prediction[prediction == 4] = 255
#Convert to 8-bit image
prediction = image.img_to_array(prediction, dtype='uint8')
#Get 1 color channel
cells=prediction[:,:,0]
#Threshold
ret1, thresh = cv2.threshold(cells, 0, 255, cv2.THRESH_BINARY)
#Filter to remove noise
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
#Get the background
background = cv2.dilate(opening,kernel,iterations=5)
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret2, foreground = cv2.threshold(dist_transform,0.04*dist_transform.max(),255,0)
foreground = np.uint8(foreground)
unknown = cv2.subtract(background,foreground)
#Connected Component Analysis
ret3, markers = cv2.connectedComponents(foreground)
markers = markers+10
markers[unknown==255] = 0
#Watershed
img = cv2.merge((prediction,prediction,prediction))
markers = cv2.watershed(img,markers)
img[markers == -1] = [0,255,255]
#Maximum filtering
markers = ndimage.maximum_filter(markers, size=max_filter_size)
# plt.imshow(markers.T, cmap='gray')
# plt.gca().invert_yaxis()
#Get an RGB colored image
img2 = color.label2rgb(markers, bg_label=1)
# plt.imshow(img2)
# plt.gca().invert_yaxis()
#Get regions
regions = measure.regionprops(markers, intensity_image=cells)
#Get Cluster IDs
cluster_ids = np.zeros(len(data))
for i in range(0,len(cluster_ids)):
row = math.floor(data[i][0])
column = math.floor(data[i][1])
if row < 256 and column < 256:
cluster_ids[i] = markers[row][column] - 10
elif row >= 256:
# cluster_ids[i] = markers[255][column]
cluster_ids[i] = 0
elif column >= 256:
# cluster_ids[i] = markers[row][255]
cluster_ids[i] = 0
cluster_ids = cluster_ids.astype('int8')
cluster_ids[cluster_ids == -11] = 0
return cluster_ids
import gradio as gr
from itertools import cycle, islice
def visual_clustering(cluster_type, num_clusters, num_samples, random_state, median_kernel_size, max_kernel_size):
NUM_CLUSTERS = num_clusters
CLUSTER_STD = 4 * np.ones(NUM_CLUSTERS)
if cluster_type == "blobs":
data = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, random_state=random_state,center_box=(0, 256), cluster_std=CLUSTER_STD)
elif cluster_type == "varied blobs":
cluster_std = 1.5 * np.ones(NUM_CLUSTERS)
data = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, cluster_std=cluster_std, random_state=random_state)
elif cluster_type == "aniso":
X, y = datasets.make_blobs(n_samples=num_samples, centers=NUM_CLUSTERS, random_state=random_state, center_box=(-30, 30))
transformation = [[0.8, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
data = (X_aniso, y)
elif cluster_type == "noisy moons":
data = datasets.make_moons(n_samples=num_samples, noise=.05)
elif cluster_type == "noisy circles":
data = datasets.make_circles(n_samples=num_samples, factor=.01, noise=.05)
max_x = max(data[0][:, 0])
min_x = min(data[0][:, 0])
new_max = 256
new_min = 0
data[0][:, 0] = (((data[0][:, 0] - min_x)*(new_max-new_min))/(max_x-min_x))+ new_min
max_y = max(data[0][:, 1])
min_y = min(data[0][:, 1])
new_max_y = 256
new_min_y = 0
data[0][:, 1] = (((data[0][:, 1] - min_y)*(new_max_y-new_min_y))/(max_y-min_y))+ new_min_y
fig1 = plt.figure()
plt.scatter(data[0][:, 0], data[0][:, 1], s=1, c='black')
plt.close()
input = create_input_image(data[0])
filtered = ndimage.median_filter(input, size=median_kernel_size)
result = predict_sample(filtered)
y_km = get_instances(result, data[0], max_filter_size=max_kernel_size)
colors = np.array(list(islice(cycle(["#000000", '#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00' ,'#491010']),
int(max(y_km) + 1))))
#add black color for outliers (if any)
colors = np.append(colors, ["#000000"])
fig2 = plt.figure()
plt.scatter(data[0][:, 0], data[0][:, 1], s=10, color=colors[y_km.astype('int8')])
plt.close()
return fig1, fig2
iface = gr.Interface(
fn=visual_clustering,
inputs=[
gr.inputs.Dropdown(["blobs", "varied blobs", "aniso", "noisy moons", "noisy circles" ]),
gr.inputs.Slider(1, 10, step=1, label='Number of Clusters'),
gr.inputs.Slider(10000, 1000000, step=10000, label='Number of Samples'),
gr.inputs.Slider(1, 100, step=1, label='Random State'),
gr.inputs.Slider(1, 100, step=1, label='Denoising Filter Kernel Size'),
gr.inputs.Slider(1,100, step=1, label='Max Filter Kernel Size')
],
outputs=[
gr.outputs.Image(type='plot', label='Dataset'),
gr.outputs.Image(type='plot', label='Clustering Result')
]
)
iface.launch(debug=True)