Spaces:
Build error
Build error
tareknaous
commited on
Commit
·
e6770c4
1
Parent(s):
5d81ee1
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
from scipy import ndimage
|
6 |
+
from skimage import measure, color, io
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
from scipy import ndimage
|
9 |
+
|
10 |
+
#Function that predicts on only 1 sample
|
11 |
+
def predict_sample(image):
|
12 |
+
prediction = model.predict(image[tf.newaxis, ...])
|
13 |
+
prediction[prediction > 0.5 ] = 1
|
14 |
+
prediction[prediction !=1] = 0
|
15 |
+
result = prediction[0]*255
|
16 |
+
return result
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def create_input_image(data, visualize=False):
|
22 |
+
#Initialize input matrix
|
23 |
+
input = np.ones((256,256))
|
24 |
+
|
25 |
+
#Fill matrix with data point values
|
26 |
+
for i in range(0,len(data)):
|
27 |
+
if math.floor(data[i][0]) < 256 and math.floor(data[i][1]) < 256:
|
28 |
+
input[math.floor(data[i][0])][math.floor(data[i][1])] = 0
|
29 |
+
elif math.floor(data[i][0]) >= 256:
|
30 |
+
input[255][math.floor(data[i][1])] = 0
|
31 |
+
elif math.floor(data[i][1]) >= 256:
|
32 |
+
input[math.floor(data[i][0])][255] = 0
|
33 |
+
|
34 |
+
#Visualize
|
35 |
+
if visualize == True:
|
36 |
+
plt.imshow(input.T, cmap='gray')
|
37 |
+
plt.gca().invert_yaxis()
|
38 |
+
|
39 |
+
return input
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def get_instances(prediction, data, max_filter_size=1):
|
45 |
+
#Adjust format (clusters to be 255 and rest is 0)
|
46 |
+
prediction[prediction == 255] = 3
|
47 |
+
prediction[prediction == 0] = 4
|
48 |
+
prediction[prediction == 3] = 0
|
49 |
+
prediction[prediction == 4] = 255
|
50 |
+
|
51 |
+
#Convert to 8-bit image
|
52 |
+
prediction = image.img_to_array(prediction, dtype='uint8')
|
53 |
+
|
54 |
+
#Get 1 color channel
|
55 |
+
cells=prediction[:,:,0]
|
56 |
+
#Threshold
|
57 |
+
ret1, thresh = cv2.threshold(cells, 0, 255, cv2.THRESH_BINARY)
|
58 |
+
#Filter to remove noise
|
59 |
+
kernel = np.ones((3,3),np.uint8)
|
60 |
+
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
|
61 |
+
|
62 |
+
#Get the background
|
63 |
+
background = cv2.dilate(opening,kernel,iterations=5)
|
64 |
+
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
|
65 |
+
ret2, foreground = cv2.threshold(dist_transform,0.04*dist_transform.max(),255,0)
|
66 |
+
foreground = np.uint8(foreground)
|
67 |
+
unknown = cv2.subtract(background,foreground)
|
68 |
+
|
69 |
+
#Connected Component Analysis
|
70 |
+
ret3, markers = cv2.connectedComponents(foreground)
|
71 |
+
markers = markers+10
|
72 |
+
markers[unknown==255] = 0
|
73 |
+
|
74 |
+
#Watershed
|
75 |
+
img = cv2.merge((prediction,prediction,prediction))
|
76 |
+
markers = cv2.watershed(img,markers)
|
77 |
+
img[markers == -1] = [0,255,255]
|
78 |
+
|
79 |
+
#Maximum filtering
|
80 |
+
markers = ndimage.maximum_filter(markers, size=max_filter_size)
|
81 |
+
# plt.imshow(markers.T, cmap='gray')
|
82 |
+
# plt.gca().invert_yaxis()
|
83 |
+
|
84 |
+
#Get an RGB colored image
|
85 |
+
img2 = color.label2rgb(markers, bg_label=1)
|
86 |
+
# plt.imshow(img2)
|
87 |
+
# plt.gca().invert_yaxis()
|
88 |
+
|
89 |
+
#Get regions
|
90 |
+
regions = measure.regionprops(markers, intensity_image=cells)
|
91 |
+
|
92 |
+
#Get Cluster IDs
|
93 |
+
cluster_ids = np.zeros(len(data))
|
94 |
+
|
95 |
+
for i in range(0,len(cluster_ids)):
|
96 |
+
row = math.floor(data[i][0])
|
97 |
+
column = math.floor(data[i][1])
|
98 |
+
if row < 256 and column < 256:
|
99 |
+
cluster_ids[i] = markers[row][column] - 10
|
100 |
+
elif row >= 256:
|
101 |
+
# cluster_ids[i] = markers[255][column]
|
102 |
+
cluster_ids[i] = 0
|
103 |
+
elif column >= 256:
|
104 |
+
# cluster_ids[i] = markers[row][255]
|
105 |
+
cluster_ids[i] = 0
|
106 |
+
|
107 |
+
cluster_ids = cluster_ids.astype('int8')
|
108 |
+
cluster_ids[cluster_ids == -11] = 0
|
109 |
+
|
110 |
+
return cluster_ids
|