File size: 9,793 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import albumentations as A
from albumentations.augmentations.geometric.functional import safe_rotate_enlarged_img_size, _maybe_process_in_chunks, \
                                                              keypoint_rotate
import cv2
import math
import random
import numpy as np


def safe_rotate(
    img: np.ndarray,
    angle: int = 0,
    interpolation: int = cv2.INTER_LINEAR,
    value: int = None,
    border_mode: int = cv2.BORDER_REFLECT_101,
):

    old_rows, old_cols = img.shape[:2]

    # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape
    image_center = (old_cols / 2, old_rows / 2)

    # Rows and columns of the rotated image (not cropped)
    new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols)

    # Rotation Matrix
    rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)

    # Shift the image to create padding
    rotation_mat[0, 2] += new_cols / 2 - image_center[0]
    rotation_mat[1, 2] += new_rows / 2 - image_center[1]

    # CV2 Transformation function
    warp_affine_fn = _maybe_process_in_chunks(
        cv2.warpAffine,
        M=rotation_mat,
        dsize=(new_cols, new_rows),
        flags=interpolation,
        borderMode=border_mode,
        borderValue=value,
    )

    # rotate image with the new bounds
    rotated_img = warp_affine_fn(img)

    return rotated_img


def keypoint_safe_rotate(keypoint, angle, rows, cols):
    old_rows = rows
    old_cols = cols

    # Rows and columns of the rotated image (not cropped)
    new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols)

    col_diff = (new_cols - old_cols) / 2
    row_diff = (new_rows - old_rows) / 2

    # Shift keypoint
    shifted_keypoint = (int(keypoint[0] + col_diff), int(keypoint[1] + row_diff), keypoint[2], keypoint[3])

    # Rotate keypoint
    rotated_keypoint = keypoint_rotate(shifted_keypoint, angle, rows=new_rows, cols=new_cols)

    return rotated_keypoint


class SafeRotate(A.SafeRotate):

    def __init__(
        self,
        limit=90,
        interpolation=cv2.INTER_LINEAR,
        border_mode=cv2.BORDER_REFLECT_101,
        value=None,
        mask_value=None,
        always_apply=False,
        p=0.5,
    ):
        super(SafeRotate, self).__init__(
            limit=limit,
            interpolation=interpolation,
            border_mode=border_mode,
            value=value,
            mask_value=mask_value,
            always_apply=always_apply,
            p=p)

    def apply(self, img, angle=0, interpolation=cv2.INTER_LINEAR, **params):
        return safe_rotate(
            img=img, value=self.value, angle=angle, interpolation=interpolation, border_mode=self.border_mode)

    def apply_to_keypoint(self, keypoint, angle=0, **params):
        return keypoint_safe_rotate(keypoint, angle=angle, rows=params["rows"], cols=params["cols"])


class CropWhite(A.DualTransform):
    
    def __init__(self, value=(255, 255, 255), pad=0, p=1.0):
        super(CropWhite, self).__init__(p=p)
        self.value = value
        self.pad = pad
        assert pad >= 0

    def update_params(self, params, **kwargs):
        super().update_params(params, **kwargs)
        assert "image" in kwargs
        img = kwargs["image"]
        height, width, _ = img.shape
        x = (img != self.value).sum(axis=2)
        if x.sum() == 0:
            return params
        row_sum = x.sum(axis=1)
        top = 0
        while row_sum[top] == 0 and top+1 < height:
            top += 1
        bottom = height
        while row_sum[bottom-1] == 0 and bottom-1 > top:
            bottom -= 1
        col_sum = x.sum(axis=0)
        left = 0
        while col_sum[left] == 0 and left+1 < width:
            left += 1
        right = width
        while col_sum[right-1] == 0 and right-1 > left:
            right -= 1
        # crop_top = max(0, top - self.pad)
        # crop_bottom = max(0, height - bottom - self.pad)
        # crop_left = max(0, left - self.pad)
        # crop_right = max(0, width - right - self.pad)
        # params.update({"crop_top": crop_top, "crop_bottom": crop_bottom,
        #                "crop_left": crop_left, "crop_right": crop_right})
        params.update({"crop_top": top, "crop_bottom": height - bottom,
                       "crop_left": left, "crop_right": width - right})
        return params

    def apply(self, img, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params):
        height, width, _ = img.shape
        img = img[crop_top:height - crop_bottom, crop_left:width - crop_right]
        img = A.augmentations.pad_with_params(
            img, self.pad, self.pad, self.pad, self.pad, border_mode=cv2.BORDER_CONSTANT, value=self.value)
        return img

    def apply_to_keypoint(self, keypoint, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params):
        x, y, angle, scale = keypoint[:4]
        return x - crop_left + self.pad, y - crop_top + self.pad, angle, scale

    def get_transform_init_args_names(self):
        return ('value', 'pad')


class PadWhite(A.DualTransform):

    def __init__(self, pad_ratio=0.2, p=0.5, value=(255, 255, 255)):
        super(PadWhite, self).__init__(p=p)
        self.pad_ratio = pad_ratio
        self.value = value

    def update_params(self, params, **kwargs):
        super().update_params(params, **kwargs)
        assert "image" in kwargs
        img = kwargs["image"]
        height, width, _ = img.shape
        side = random.randrange(4)
        if side == 0:
            params['pad_top'] = int(height * self.pad_ratio * random.random())
        elif side == 1:
            params['pad_bottom'] = int(height * self.pad_ratio * random.random())
        elif side == 2:
            params['pad_left'] = int(width * self.pad_ratio * random.random())
        elif side == 3:
            params['pad_right'] = int(width * self.pad_ratio * random.random())
        return params

    def apply(self, img, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params):
        height, width, _ = img.shape
        img = A.augmentations.pad_with_params(
            img, pad_top, pad_bottom, pad_left, pad_right, border_mode=cv2.BORDER_CONSTANT, value=self.value)
        return img

    def apply_to_keypoint(self, keypoint, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params):
        x, y, angle, scale = keypoint[:4]
        return x + pad_left, y + pad_top, angle, scale

    def get_transform_init_args_names(self):
        return ('value', 'pad_ratio')


class SaltAndPepperNoise(A.DualTransform):

    def __init__(self, num_dots, value=(0, 0, 0), p=0.5):
        super().__init__(p)
        self.num_dots = num_dots
        self.value = value

    def apply(self, img, **params):
        height, width, _ = img.shape
        num_dots = random.randrange(self.num_dots + 1)
        for i in range(num_dots):
            x = random.randrange(height)
            y = random.randrange(width)
            img[x, y] = self.value
        return img

    def apply_to_keypoint(self, keypoint, **params):
        return keypoint

    def get_transform_init_args_names(self):
        return ('value', 'num_dots')
    
class ResizePad(A.DualTransform):

    def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, value=(255, 255, 255)):
        super(ResizePad, self).__init__(always_apply=True)
        self.height = height
        self.width = width
        self.interpolation = interpolation
        self.value = value

    def apply(self, img, interpolation=cv2.INTER_LINEAR, **params):
        h, w, _ = img.shape
        img = A.augmentations.geometric.functional.resize(
            img, 
            height=min(h, self.height), 
            width=min(w, self.width), 
            interpolation=interpolation
        )
        h, w, _ = img.shape
        pad_top = (self.height - h) // 2
        pad_bottom = (self.height - h) - pad_top
        pad_left = (self.width - w) // 2
        pad_right = (self.width - w) - pad_left
        img = A.augmentations.pad_with_params(
            img,
            pad_top,
            pad_bottom,
            pad_left,
            pad_right,
            border_mode=cv2.BORDER_CONSTANT,
            value=self.value,
        )
        return img


def normalized_grid_distortion(
        img,
        num_steps=10,
        xsteps=(),
        ysteps=(),
        *args,
        **kwargs
):
    height, width = img.shape[:2]

    # compensate for smaller last steps in source image.
    x_step = width // num_steps
    last_x_step = min(width, ((num_steps + 1) * x_step)) - (num_steps * x_step)
    xsteps[-1] *= last_x_step / x_step

    y_step = height // num_steps
    last_y_step = min(height, ((num_steps + 1) * y_step)) - (num_steps * y_step)
    ysteps[-1] *= last_y_step / y_step

    # now normalize such that distortion never leaves image bounds.
    tx = width / math.floor(width / num_steps)
    ty = height / math.floor(height / num_steps)
    xsteps = np.array(xsteps) * (tx / np.sum(xsteps))
    ysteps = np.array(ysteps) * (ty / np.sum(ysteps))

    # do actual distortion.
    return A.augmentations.functional.grid_distortion(img, num_steps, xsteps, ysteps, *args, **kwargs)


class NormalizedGridDistortion(A.augmentations.transforms.GridDistortion):
    def apply(self, img, stepsx=(), stepsy=(), interpolation=cv2.INTER_LINEAR, **params):
        return normalized_grid_distortion(img, self.num_steps, stepsx, stepsy, interpolation, self.border_mode,
                                          self.value)

    def apply_to_mask(self, img, stepsx=(), stepsy=(), **params):
        return normalized_grid_distortion(
            img, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)