File size: 7,824 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from .decode_strategy import DecodeStrategy


class BeamSearch(DecodeStrategy):
    """Generation with beam search.
    """

    def __init__(self, pad, bos, eos, batch_size, beam_size, n_best, min_length,
                 return_attention, max_length):
        super(BeamSearch, self).__init__(
            pad, bos, eos, batch_size, beam_size, min_length, return_attention, max_length)
        self.beam_size = beam_size
        self.n_best = n_best

        # result caching
        self.hypotheses = [[] for _ in range(batch_size)]

        # beam state
        self.top_beam_finished = torch.zeros([batch_size], dtype=torch.bool)

        self._batch_offset = torch.arange(batch_size, dtype=torch.long)

        self.select_indices = None
        self.done = False

    def initialize(self, memory_bank, device=None):
        """Repeat src objects `beam_size` times.
        """

        def fn_map_state(state, dim):
            return torch.repeat_interleave(state, self.beam_size, dim=dim)

        memory_bank = torch.repeat_interleave(memory_bank, self.beam_size, dim=0)
        if device is None:
            device = memory_bank.device

        self.memory_length = memory_bank.size(1)
        super().initialize(memory_bank, device)

        self.best_scores = torch.full([self.batch_size], -1e10, dtype=torch.float, device=device)
        self._beam_offset = torch.arange(
            0, self.batch_size * self.beam_size, step=self.beam_size, dtype=torch.long, device=device)
        self.topk_log_probs = torch.tensor(
            [0.0] + [float("-inf")] * (self.beam_size - 1), device=device
        ).repeat(self.batch_size)
        # buffers for the topk scores and 'backpointer'
        self.topk_scores = torch.empty((self.batch_size, self.beam_size), dtype=torch.float, device=device)
        self.topk_ids = torch.empty((self.batch_size, self.beam_size), dtype=torch.long, device=device)
        self._batch_index = torch.empty([self.batch_size, self.beam_size], dtype=torch.long, device=device)

        return fn_map_state, memory_bank

    @property
    def current_predictions(self):
        return self.alive_seq[:, -1]

    @property
    def current_backptr(self):
        # for testing
        return self.select_indices.view(self.batch_size, self.beam_size)

    @property
    def batch_offset(self):
        return self._batch_offset

    def _pick(self, log_probs):
        """Return token decision for a step.

        Args:
            log_probs (FloatTensor): (B, vocab_size)

        Returns:
            topk_scores (FloatTensor): (B, beam_size)
            topk_ids (LongTensor): (B, beam_size)
        """
        vocab_size = log_probs.size(-1)

        # Flatten probs into a list of probabilities.
        curr_scores = log_probs.reshape(-1, self.beam_size * vocab_size)
        topk_scores, topk_ids = torch.topk(curr_scores, self.beam_size, dim=-1)
        return topk_scores, topk_ids

    def advance(self, log_probs, attn):
        """
        Args:
            log_probs: (B * beam_size, vocab_size)
        """
        vocab_size = log_probs.size(-1)

        # (non-finished) batch_size
        _B = log_probs.shape[0] // self.beam_size

        step = len(self)  # alive_seq
        self.ensure_min_length(log_probs)

        # Multiply probs by the beam probability
        log_probs += self.topk_log_probs.view(_B * self.beam_size, 1)

        curr_length = step + 1
        curr_scores = log_probs / curr_length  # avg log_prob
        self.topk_scores, self.topk_ids = self._pick(curr_scores)
        # topk_scores/topk_ids: (batch_size, beam_size)

        # Recover log probs
        torch.mul(self.topk_scores, curr_length, out=self.topk_log_probs)

        # Resolve beam origin and map to batch index flat representation.
        self._batch_index = self.topk_ids // vocab_size
        self._batch_index += self._beam_offset[:_B].unsqueeze(1)
        self.select_indices = self._batch_index.view(_B * self.beam_size)
        self.topk_ids.fmod_(vocab_size)  # resolve true word ids

        # Append last prediction.
        self.alive_seq = torch.cat(
            [self.alive_seq.index_select(0, self.select_indices),
             self.topk_ids.view(_B * self.beam_size, 1)], -1)

        if self.return_attention:
            current_attn = attn.index_select(1, self.select_indices)
            if step == 1:
                self.alive_attn = current_attn
            else:
                self.alive_attn = self.alive_attn.index_select(
                    1, self.select_indices)
                self.alive_attn = torch.cat([self.alive_attn, current_attn], 0)

        self.is_finished = self.topk_ids.eq(self.eos)
        self.ensure_max_length()

    def update_finished(self):
        _B_old = self.topk_log_probs.shape[0]
        step = self.alive_seq.shape[-1]  # len(self)
        self.topk_log_probs.masked_fill_(self.is_finished, -1e10)

        self.is_finished = self.is_finished.to('cpu')
        self.top_beam_finished |= self.is_finished[:, 0].eq(1)
        predictions = self.alive_seq.view(_B_old, self.beam_size, step)
        attention = (
            self.alive_attn.view(
                step - 1, _B_old, self.beam_size, self.alive_attn.size(-1))
            if self.alive_attn is not None else None)
        non_finished_batch = []
        for i in range(self.is_finished.size(0)):
            b = self._batch_offset[i]
            finished_hyp = self.is_finished[i].nonzero(as_tuple=False).view(-1)
            # Store finished hypothesis for this batch.
            for j in finished_hyp:  # Beam level: finished beam j in batch i
                self.hypotheses[b].append((
                    self.topk_scores[i, j],
                    predictions[i, j, 1:],  # Ignore start token
                    attention[:, i, j, :self.memory_length]
                    if attention is not None else None))
            # End condition is the top beam finished and we can return
            # n_best hypotheses.
            finish_flag = self.top_beam_finished[i] != 0
            if finish_flag and len(self.hypotheses[b]) >= self.n_best:
                best_hyp = sorted(
                    self.hypotheses[b], key=lambda x: x[0], reverse=True)
                for n, (score, pred, attn) in enumerate(best_hyp):
                    if n >= self.n_best:
                        break
                    self.scores[b].append(score.item())
                    self.predictions[b].append(pred)
                    self.attention[b].append(
                        attn if attn is not None else [])
            else:
                non_finished_batch.append(i)
        non_finished = torch.tensor(non_finished_batch)

        if len(non_finished) == 0:
            self.done = True
            return

        _B_new = non_finished.shape[0]
        # Remove finished batches for the next step
        self.top_beam_finished = self.top_beam_finished.index_select(0, non_finished)
        self._batch_offset = self._batch_offset.index_select(0, non_finished)
        non_finished = non_finished.to(self.topk_ids.device)
        self.topk_log_probs = self.topk_log_probs.index_select(0, non_finished)
        self._batch_index = self._batch_index.index_select(0, non_finished)
        self.select_indices = self._batch_index.view(_B_new * self.beam_size)
        self.alive_seq = predictions.index_select(0, non_finished).view(-1, self.alive_seq.size(-1))
        self.topk_scores = self.topk_scores.index_select(0, non_finished)
        self.topk_ids = self.topk_ids.index_select(0, non_finished)

        if self.alive_attn is not None:
            inp_seq_len = self.alive_attn.size(-1)
            self.alive_attn = attention.index_select(1, non_finished) \
                .view(step - 1, _B_new * self.beam_size, inp_seq_len)