File size: 10,986 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import argparse
from typing import List
import cv2
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from .dataset import get_transforms
from .model import Encoder, Decoder
from .chemistry import convert_graph_to_smiles
from .tokenizer import get_tokenizer
BOND_TYPES = ["", "single", "double", "triple", "aromatic", "solid wedge", "dashed wedge"]
def safe_load(module, module_states):
def remove_prefix(state_dict):
return {k.replace('module.', ''): v for k, v in state_dict.items()}
missing_keys, unexpected_keys = module.load_state_dict(remove_prefix(module_states), strict=False)
return
class MolScribe:
def __init__(self, model_path, device=None):
"""
MolScribe Interface
:param model_path: path of the model checkpoint.
:param device: torch device, defaults to be CPU.
"""
model_states = torch.load(model_path, map_location=torch.device('cpu'))
args = self._get_args(model_states['args'])
if device is None:
device = torch.device('cpu')
self.device = device
self.tokenizer = get_tokenizer(args)
self.encoder, self.decoder = self._get_model(args, self.tokenizer, self.device, model_states)
self.transform = get_transforms(args.input_size, augment=False)
def _get_args(self, args_states=None):
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--encoder', type=str, default='swin_base')
parser.add_argument('--decoder', type=str, default='transformer')
parser.add_argument('--trunc_encoder', action='store_true') # use the hidden states before downsample
parser.add_argument('--no_pretrained', action='store_true')
parser.add_argument('--use_checkpoint', action='store_true', default=True)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--embed_dim', type=int, default=256)
parser.add_argument('--enc_pos_emb', action='store_true')
group = parser.add_argument_group("transformer_options")
group.add_argument("--dec_num_layers", help="No. of layers in transformer decoder", type=int, default=6)
group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
group.add_argument("--dec_num_queries", type=int, default=128)
group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
parser.add_argument('--continuous_coords', action='store_true')
parser.add_argument('--compute_confidence', action='store_true')
# Data
parser.add_argument('--input_size', type=int, default=384)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--coord_bins', type=int, default=64)
parser.add_argument('--sep_xy', action='store_true', default=True)
args = parser.parse_args([])
if args_states:
for key, value in args_states.items():
args.__dict__[key] = value
return args
def _get_model(self, args, tokenizer, device, states):
encoder = Encoder(args, pretrained=False)
args.encoder_dim = encoder.n_features
decoder = Decoder(args, tokenizer)
safe_load(encoder, states['encoder'])
safe_load(decoder, states['decoder'])
# print(f"Model loaded from {load_path}")
encoder.to(device)
decoder.to(device)
encoder.eval()
decoder.eval()
return encoder, decoder
def predict_images(self, input_images: List, return_atoms_bonds=False, return_confidence=False, batch_size=16):
device = self.device
predictions = []
self.decoder.compute_confidence = return_confidence
for idx in range(0, len(input_images), batch_size):
batch_images = input_images[idx:idx+batch_size]
images = [self.transform(image=image, keypoints=[])['image'] for image in batch_images]
images = torch.stack(images, dim=0).to(device)
with torch.no_grad():
features, hiddens = self.encoder(images)
batch_predictions = self.decoder.decode(features, hiddens)
predictions += batch_predictions
return self.convert_graph_to_output(predictions, input_images, return_confidence, return_atoms_bonds)
def convert_graph_to_output(self, predictions, input_images, return_confidence=True, return_atoms_bonds=True):
node_coords = [pred['chartok_coords']['coords'] for pred in predictions]
node_symbols = [pred['chartok_coords']['symbols'] for pred in predictions]
edges = [pred['edges'] for pred in predictions]
# node_symbols = [r_groups[symbol] if symbol in r_groups else symbol for symbol in node_symbols]
smiles_list, molblock_list, r_success = convert_graph_to_smiles(
node_coords, node_symbols, edges, images=input_images)
outputs = []
for smiles, molblock, pred in zip(smiles_list, molblock_list, predictions):
pred_dict = {"smiles": smiles, "molfile": molblock, "oringinal_coords": pred['chartok_coords']['coords'], "original_symbols": pred['chartok_coords']['symbols'], "orignal_edges": pred['edges']}
if return_confidence:
pred_dict["confidence"] = pred["overall_score"]
if return_atoms_bonds:
coords = pred['chartok_coords']['coords']
symbols = pred['chartok_coords']['symbols']
# get atoms info
atom_list = []
for i, (symbol, coord) in enumerate(zip(symbols, coords)):
atom_dict = {"atom_symbol": symbol, "x": round(coord[0],3), "y": round(coord[1],3)}
if return_confidence:
atom_dict["confidence"] = pred['chartok_coords']['atom_scores'][i]
atom_list.append(atom_dict)
pred_dict["atoms"] = atom_list
# get bonds info
bond_list = []
num_atoms = len(symbols)
for i in range(num_atoms-1):
for j in range(i+1, num_atoms):
bond_type_int = pred['edges'][i][j]
if bond_type_int != 0:
bond_type_str = BOND_TYPES[bond_type_int]
bond_dict = {"bond_type": bond_type_str, "endpoint_atoms": (i, j)}
if return_confidence:
bond_dict["confidence"] = pred["edge_scores"][i][j]
bond_list.append(bond_dict)
pred_dict["bonds"] = bond_list
outputs.append(pred_dict)
return outputs
def predict_image(self, image, return_atoms_bonds=False, return_confidence=False):
return self.predict_images([
image], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]
def predict_image_files(self, image_files: List, return_atoms_bonds=False, return_confidence=False):
input_images = []
for path in image_files:
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_images.append(image)
return self.predict_images(
input_images, return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)
def predict_image_file(self, image_file: str, return_atoms_bonds=False, return_confidence=False):
return self.predict_image_files(
[image_file], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]
def draw_prediction(self, prediction, image, notebook=False):
if "atoms" not in prediction or "bonds" not in prediction:
raise ValueError("atoms and bonds information are not provided.")
h, w, _ = image.shape
h, w = np.array([h, w]) * 400 / max(h, w)
image = cv2.resize(image, (int(w), int(h)))
fig, ax = plt.subplots(1, 1)
ax.axis('off')
ax.set_xlim(-0.05 * w, w * 1.05)
ax.set_ylim(1.05 * h, -0.05 * h)
plt.imshow(image, alpha=0.)
x = [a['x'] * w for a in prediction['atoms']]
y = [a['y'] * h for a in prediction['atoms']]
markersize = min(w, h) / 3
plt.scatter(x, y, marker='o', s=markersize, color='lightskyblue', zorder=10)
for i, atom in enumerate(prediction['atoms']):
symbol = atom['atom_symbol'].lstrip('[').rstrip(']')
plt.annotate(symbol, xy=(x[i], y[i]), ha='center', va='center', color='black', zorder=100)
for bond in prediction['bonds']:
u, v = bond['endpoint_atoms']
x1, y1, x2, y2 = x[u], y[u], x[v], y[v]
bond_type = bond['bond_type']
if bond_type == 'single':
color = 'tab:green'
ax.plot([x1, x2], [y1, y2], color, linewidth=4)
elif bond_type == 'aromatic':
color = 'tab:purple'
ax.plot([x1, x2], [y1, y2], color, linewidth=4)
elif bond_type == 'double':
color = 'tab:green'
ax.plot([x1, x2], [y1, y2], color=color, linewidth=7)
ax.plot([x1, x2], [y1, y2], color='w', linewidth=1.5, zorder=2.1)
elif bond_type == 'triple':
color = 'tab:green'
x1s, x2s = 0.8 * x1 + 0.2 * x2, 0.2 * x1 + 0.8 * x2
y1s, y2s = 0.8 * y1 + 0.2 * y2, 0.2 * y1 + 0.8 * y2
ax.plot([x1s, x2s], [y1s, y2s], color=color, linewidth=9)
ax.plot([x1, x2], [y1, y2], color='w', linewidth=5, zorder=2.05)
ax.plot([x1, x2], [y1, y2], color=color, linewidth=2, zorder=2.1)
else:
length = 10
width = 10
color = 'tab:green'
if bond_type == 'solid wedge':
ax.annotate('', xy=(x1, y1), xytext=(x2, y2),
arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
else:
ax.annotate('', xy=(x2, y2), xytext=(x1, y1),
arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
fig.tight_layout()
if not notebook:
canvas = FigureCanvasAgg(fig)
canvas.draw()
buf = canvas.buffer_rgba()
result_image = np.asarray(buf)
plt.close(fig)
return result_image
|