File size: 10,986 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
from typing import List

import cv2
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg

from .dataset import get_transforms
from .model import Encoder, Decoder
from .chemistry import convert_graph_to_smiles
from .tokenizer import get_tokenizer


BOND_TYPES = ["", "single", "double", "triple", "aromatic", "solid wedge", "dashed wedge"]


def safe_load(module, module_states):
    def remove_prefix(state_dict):
        return {k.replace('module.', ''): v for k, v in state_dict.items()}
    missing_keys, unexpected_keys = module.load_state_dict(remove_prefix(module_states), strict=False)
    return


class MolScribe:

    def __init__(self, model_path, device=None):
        """
        MolScribe Interface
        :param model_path: path of the model checkpoint.
        :param device: torch device, defaults to be CPU.
        """
        model_states = torch.load(model_path, map_location=torch.device('cpu'))
        args = self._get_args(model_states['args'])
        if device is None:
            device = torch.device('cpu')
        self.device = device
        self.tokenizer = get_tokenizer(args)
        self.encoder, self.decoder = self._get_model(args, self.tokenizer, self.device, model_states)
        self.transform = get_transforms(args.input_size, augment=False)

    def _get_args(self, args_states=None):
        parser = argparse.ArgumentParser()
        # Model
        parser.add_argument('--encoder', type=str, default='swin_base')
        parser.add_argument('--decoder', type=str, default='transformer')
        parser.add_argument('--trunc_encoder', action='store_true')  # use the hidden states before downsample
        parser.add_argument('--no_pretrained', action='store_true')
        parser.add_argument('--use_checkpoint', action='store_true', default=True)
        parser.add_argument('--dropout', type=float, default=0.5)
        parser.add_argument('--embed_dim', type=int, default=256)
        parser.add_argument('--enc_pos_emb', action='store_true')
        group = parser.add_argument_group("transformer_options")
        group.add_argument("--dec_num_layers", help="No. of layers in transformer decoder", type=int, default=6)
        group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
        group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
        group.add_argument("--dec_num_queries", type=int, default=128)
        group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
        group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
        group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
        parser.add_argument('--continuous_coords', action='store_true')
        parser.add_argument('--compute_confidence', action='store_true')
        # Data
        parser.add_argument('--input_size', type=int, default=384)
        parser.add_argument('--vocab_file', type=str, default=None)
        parser.add_argument('--coord_bins', type=int, default=64)
        parser.add_argument('--sep_xy', action='store_true', default=True)

        args = parser.parse_args([])
        if args_states:
            for key, value in args_states.items():
                args.__dict__[key] = value
        return args

    def _get_model(self, args, tokenizer, device, states):
        encoder = Encoder(args, pretrained=False)
        args.encoder_dim = encoder.n_features
        decoder = Decoder(args, tokenizer)

        safe_load(encoder, states['encoder'])
        safe_load(decoder, states['decoder'])
        # print(f"Model loaded from {load_path}")

        encoder.to(device)
        decoder.to(device)
        encoder.eval()
        decoder.eval()
        return encoder, decoder

    def predict_images(self, input_images: List, return_atoms_bonds=False, return_confidence=False, batch_size=16):
        device = self.device
        predictions = []
        self.decoder.compute_confidence = return_confidence

        for idx in range(0, len(input_images), batch_size):
            batch_images = input_images[idx:idx+batch_size]
            images = [self.transform(image=image, keypoints=[])['image'] for image in batch_images]
            images = torch.stack(images, dim=0).to(device)
            with torch.no_grad():
                features, hiddens = self.encoder(images)
                batch_predictions = self.decoder.decode(features, hiddens)
            predictions += batch_predictions

        return self.convert_graph_to_output(predictions, input_images, return_confidence, return_atoms_bonds)


    def convert_graph_to_output(self, predictions, input_images, return_confidence=True, return_atoms_bonds=True):
        node_coords = [pred['chartok_coords']['coords'] for pred in predictions]
        node_symbols = [pred['chartok_coords']['symbols'] for pred in predictions]
        edges = [pred['edges'] for pred in predictions]
        # node_symbols = [r_groups[symbol] if symbol in r_groups else symbol for symbol in node_symbols]
        smiles_list, molblock_list, r_success = convert_graph_to_smiles(
            node_coords, node_symbols, edges, images=input_images)

        outputs = []
        for smiles, molblock, pred in zip(smiles_list, molblock_list, predictions):
            pred_dict = {"smiles": smiles, "molfile": molblock, "oringinal_coords": pred['chartok_coords']['coords'], "original_symbols": pred['chartok_coords']['symbols'], "orignal_edges": pred['edges']} 
            if return_confidence:
                pred_dict["confidence"] = pred["overall_score"]
            if return_atoms_bonds:
                coords = pred['chartok_coords']['coords']
                symbols = pred['chartok_coords']['symbols']
    
            
                # get atoms info
                atom_list = []
                for i, (symbol, coord) in enumerate(zip(symbols, coords)):
                    atom_dict = {"atom_symbol": symbol, "x": round(coord[0],3), "y": round(coord[1],3)}
                    if return_confidence:
                        atom_dict["confidence"] = pred['chartok_coords']['atom_scores'][i]
                    atom_list.append(atom_dict)
                pred_dict["atoms"] = atom_list
                # get bonds info
                bond_list = []
                num_atoms = len(symbols)
                for i in range(num_atoms-1):
                    for j in range(i+1, num_atoms):
                        bond_type_int = pred['edges'][i][j]
                        if bond_type_int != 0:
                            bond_type_str = BOND_TYPES[bond_type_int]
                            bond_dict = {"bond_type": bond_type_str, "endpoint_atoms": (i, j)}
                            if return_confidence:
                                bond_dict["confidence"] = pred["edge_scores"][i][j]
                            bond_list.append(bond_dict)
                pred_dict["bonds"] = bond_list
            outputs.append(pred_dict)
        return outputs

    def predict_image(self, image, return_atoms_bonds=False, return_confidence=False):
        return self.predict_images([
            image], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]

    def predict_image_files(self, image_files: List, return_atoms_bonds=False, return_confidence=False):
        input_images = []
        for path in image_files:
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            input_images.append(image)
        return self.predict_images(
            input_images, return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)

    def predict_image_file(self, image_file: str, return_atoms_bonds=False, return_confidence=False):
        return self.predict_image_files(
            [image_file], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]

    def draw_prediction(self, prediction, image, notebook=False):
        if "atoms" not in prediction or "bonds" not in prediction:
            raise ValueError("atoms and bonds information are not provided.")
        h, w, _ = image.shape
        h, w = np.array([h, w]) * 400 / max(h, w)
        image = cv2.resize(image, (int(w), int(h)))
        fig, ax = plt.subplots(1, 1)
        ax.axis('off')
        ax.set_xlim(-0.05 * w, w * 1.05)
        ax.set_ylim(1.05 * h, -0.05 * h)
        plt.imshow(image, alpha=0.)
        x = [a['x'] * w for a in prediction['atoms']]
        y = [a['y'] * h for a in prediction['atoms']]
        markersize = min(w, h) / 3
        plt.scatter(x, y, marker='o', s=markersize, color='lightskyblue', zorder=10)
        for i, atom in enumerate(prediction['atoms']):
            symbol = atom['atom_symbol'].lstrip('[').rstrip(']')
            plt.annotate(symbol, xy=(x[i], y[i]), ha='center', va='center', color='black', zorder=100)
        for bond in prediction['bonds']:
            u, v = bond['endpoint_atoms']
            x1, y1, x2, y2 = x[u], y[u], x[v], y[v]
            bond_type = bond['bond_type']
            if bond_type == 'single':
                color = 'tab:green'
                ax.plot([x1, x2], [y1, y2], color, linewidth=4)
            elif bond_type == 'aromatic':
                color = 'tab:purple'
                ax.plot([x1, x2], [y1, y2], color, linewidth=4)
            elif bond_type == 'double':
                color = 'tab:green'
                ax.plot([x1, x2], [y1, y2], color=color, linewidth=7)
                ax.plot([x1, x2], [y1, y2], color='w', linewidth=1.5, zorder=2.1)
            elif bond_type == 'triple':
                color = 'tab:green'
                x1s, x2s = 0.8 * x1 + 0.2 * x2, 0.2 * x1 + 0.8 * x2
                y1s, y2s = 0.8 * y1 + 0.2 * y2, 0.2 * y1 + 0.8 * y2
                ax.plot([x1s, x2s], [y1s, y2s], color=color, linewidth=9)
                ax.plot([x1, x2], [y1, y2], color='w', linewidth=5, zorder=2.05)
                ax.plot([x1, x2], [y1, y2], color=color, linewidth=2, zorder=2.1)
            else:
                length = 10
                width = 10
                color = 'tab:green'
                if bond_type == 'solid wedge':
                    ax.annotate('', xy=(x1, y1), xytext=(x2, y2),
                                arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
                else:
                    ax.annotate('', xy=(x2, y2), xytext=(x1, y1),
                                arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
        fig.tight_layout()
        if not notebook:
            canvas = FigureCanvasAgg(fig)
            canvas.draw()
            buf = canvas.buffer_rgba()
            result_image = np.asarray(buf)
            plt.close(fig)
            return result_image