RxnIM / app.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
5.07 kB
import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction
PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))
# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
"2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"
def list_prompt_files_with_names():
"""
列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
返回 {friendly_name: filename} 映射。
"""
prompt_files = {}
for f in os.listdir(PROMPT_DIR):
if f.endswith(".txt"):
# 如果文件名有预定义的名字,使用预定义名字
friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
prompt_files[friendly_name] = f
return prompt_files
def parse_reactions(output_json):
"""
解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
"""
reactions_data = json.loads(output_json) # 转换 JSON 字符串为字典
reactions_list = reactions_data.get("reactions", [])
detailed_output = []
for reaction in reactions_list:
reaction_id = reaction.get("reaction_id", "Unknown ID")
reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
conditions = [
f"<span style='color:red'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
conditions_1 = [
f"<span style='color:black'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
products = [f"<span style='color:orange'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
products_1 = [f"<span style='color:black'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
# 构造反应的完整字符串,定制字体颜色
full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
full_reaction = f"<span style='color:black'>{full_reaction}</span>"
# 详细反应格式化输出
reaction_output = f"<b>Reaction: </b> {reaction_id}<br>"
reaction_output += f" Reactants: <span style='color:blue'>{', '.join(reactants)}</span><br>"
reaction_output += f" Conditions: {', '.join(conditions)}<br>"
reaction_output += f" Products: {', '.join(products)}<br>"
reaction_output += f" <b>Full Reaction:</b> {full_reaction}<br>"
reaction_output += "<br>"
detailed_output.append(reaction_output)
return detailed_output
def process_chem_image(image, selected_task):
chem_mllm = RXNIM()
# 将友好名字转换为实际文件名
prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
image_path = "temp_image.png"
image.save(image_path)
# 调用 RXNIM 处理
rxnim_result = chem_mllm.process(image_path, prompt_path)
# 将 JSON 结果解析为结构化输出
detailed_reactions = parse_reactions(rxnim_result)
# 调用 RxnScribe 模型处理并生成整合图像
predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
combined_image_path = generate_combined_image(predictions, image_path)
json_file_path = "output.json"
with open(json_file_path, "w") as json_file:
json.dump(json.loads(rxnim_result), json_file, indent=4)
# 返回详细反应和整合图像
return "\n\n".join(detailed_reactions), combined_image_path, example_diagram, json_file_path
# 获取 prompts 和友好名字
prompts_with_names = list_prompt_files_with_names()
# 示例数据:图像路径 + 任务选项
examples = [
["examples/reaction1.png", "Reaction Image Parsing Workflow"],
["examples/reaction2.png", "Reaction Image Parsing Workflow"],
["examples/reaction3.png", "Reaction Image Parsing Workflow"],
["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]
# 定义 Gradio 界面
demo = gr.Interface(
fn=process_chem_image,
inputs=[
gr.Image(type="pil", label="Upload Reaction Image"),
gr.Radio(
choices=list(prompts_with_names.keys()), # 显示任务名字
label="Select a predefined task",
),
],
outputs=[
gr.HTML(label="Reaction outputs"),
gr.Image(label="Visualization"), # 显示整合图像
gr.Image(value=example_diagram, label="Schematic Diagram"),
gr.File(label="Download JSON File"),
],
title="Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model",
description="Upload a reaction image and select a predefined task prompt.",
examples=examples, # 使用嵌套列表作为示例
examples_per_page=20,
)
demo.launch()