RxnIM / rxn /main.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
17.7 kB
import os
import math
import json
import random
import argparse
import numpy as np
import torch
import torch.distributed as dist
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, LightningDataModule
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.strategies.ddp import DDPStrategy
from transformers import get_scheduler
from reaction.model import Encoder, Decoder
from reaction.pix2seq import build_pix2seq_model
from reaction.loss import Criterion
from reaction.tokenizer import get_tokenizer
from reaction.dataset import ReactionDataset, get_collate_fn
from reaction.data import postprocess_reactions
from reaction.evaluate import CocoEvaluator, ReactionEvaluator
import reaction.utils as utils
def get_args(notebook=False):
parser = argparse.ArgumentParser()
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_valid', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--print_freq', type=int, default=200)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--no_eval', action='store_true')
# Model
parser.add_argument('--encoder', type=str, default='resnet34')
parser.add_argument('--decoder', type=str, default='lstm')
parser.add_argument('--trunc_encoder', action='store_true') # use the hidden states before downsample
parser.add_argument('--no_pretrained', action='store_true')
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--lstm_dropout', type=float, default=0.5)
parser.add_argument('--embed_dim', type=int, default=256)
parser.add_argument('--enc_pos_emb', action='store_true')
group = parser.add_argument_group("lstm_options")
group.add_argument('--decoder_dim', type=int, default=512)
group.add_argument('--decoder_layer', type=int, default=1)
group.add_argument('--attention_dim', type=int, default=256)
group = parser.add_argument_group("transformer_options")
group.add_argument("--dec_num_layers", help="No. of layers in transformer decoder", type=int, default=6)
group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
group.add_argument("--dec_num_queries", type=int, default=128)
group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
# Pix2Seq
parser.add_argument('--pix2seq', action='store_true', help="specify the model from playground")
parser.add_argument('--pix2seq_ckpt', type=str, default=None)
parser.add_argument('--large_scale_jitter', action='store_true', help='large scale jitter')
parser.add_argument('--pred_eos', action='store_true', help='use eos token instead of predicting 100 objects')
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
# Data
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--image_path', type=str, default=None)
parser.add_argument('--train_file', type=str, default=None)
parser.add_argument('--valid_file', type=str, default=None)
parser.add_argument('--test_file', type=str, default=None)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--format', type=str, default='reaction')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--augment', action='store_true')
parser.add_argument('--composite_augment', action='store_true')
parser.add_argument('--coord_bins', type=int, default=100)
parser.add_argument('--sep_xy', action='store_true')
parser.add_argument('--rand_order', action='store_true', help="randomly permute the sequence of input targets")
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--mix_noise', action='store_true')
parser.add_argument('--shuffle_bbox', action='store_true')
parser.add_argument('--images', type=str, default='')
# Training
parser.add_argument('--epochs', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('--max_grad_norm', type=float, default=5.)
parser.add_argument('--scheduler', type=str, choices=['cosine', 'constant'], default='cosine')
parser.add_argument('--warmup_ratio', type=float, default=0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--load_encoder_only', action='store_true')
parser.add_argument('--train_steps_per_epoch', type=int, default=-1)
parser.add_argument('--eval_per_epoch', type=int, default=10)
parser.add_argument('--save_path', type=str, default='output/')
parser.add_argument('--save_mode', type=str, default='best', choices=['best', 'all', 'last'])
parser.add_argument('--load_ckpt', type=str, default='best')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--num_train_example', type=int, default=None)
parser.add_argument('--label_smoothing', type=float, default=0.0)
parser.add_argument('--save_image', action='store_true')
# Inference
parser.add_argument('--beam_size', type=int, default=1)
parser.add_argument('--n_best', type=int, default=1)
parser.add_argument('--molscribe', action='store_true')
args = parser.parse_args([]) if notebook else parser.parse_args()
args.images = args.images.split(',')
return args
class ReactionExtractor(LightningModule):
def __init__(self, args, tokenizer):
super().__init__()
self.args = args
self.tokenizer = tokenizer
self.encoder = Encoder(args, pretrained=(not args.no_pretrained))
args.encoder_dim = self.encoder.n_features
self.decoder = Decoder(args, tokenizer)
self.criterion = Criterion(args, tokenizer)
def training_step(self, batch, batch_idx):
indices, images, refs = batch
features, hiddens = self.encoder(images, refs)
results = self.decoder(features, hiddens, refs)
losses = self.criterion(results, refs)
loss = sum(losses.values())
self.log('train/loss', loss)
self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
indices, images, refs = batch
features, hiddens = self.encoder(images, refs)
batch_preds, batch_beam_preds = self.decoder.decode(
features, hiddens, refs,
beam_size=self.args.beam_size, n_best=self.args.n_best)
return indices, batch_preds
def validation_epoch_end(self, outputs, phase='val'):
if self.trainer.num_devices > 1:
gathered_outputs = [None for i in range(self.trainer.num_devices)]
dist.all_gather_object(gathered_outputs, outputs)
gathered_outputs = sum(gathered_outputs, [])
else:
gathered_outputs = outputs
format = self.args.format
predictions = utils.merge_predictions(gathered_outputs)
name = self.eval_dataset.name
scores = [0]
if self.trainer.is_global_zero:
if not self.args.no_eval:
if format == 'bbox':
coco_evaluator = CocoEvaluator(self.eval_dataset.coco)
stats = coco_evaluator.evaluate(predictions['bbox'])
scores = results = list(stats)
elif format == 'reaction':
epoch = self.trainer.current_epoch
evaluator = ReactionEvaluator()
results, *_ = evaluator.evaluate_summarize(self.eval_dataset.data, predictions['reaction'])
precision, recall, f1 = \
results['overall']['precision'], results['overall']['recall'], results['overall']['f1']
scores = [f1]
self.print(f'Epoch: {epoch:>3} Precision: {precision:.4f} Recall: {recall:.4f} F1: {f1:.4f}')
results['mol_only'], *_ = evaluator.evaluate_summarize(
self.eval_dataset.data, predictions['reaction'], mol_only=True, merge_condition=True)
else:
raise NotImplementedError
with open(os.path.join(self.trainer.default_root_dir, f'eval_{name}.json'), 'w') as f:
json.dump(results, f)
if phase == 'test':
self.print(json.dumps(results, indent=4))
with open(os.path.join(self.trainer.default_root_dir, f'prediction_{name}.json'), 'w') as f:
json.dump(predictions, f)
dist.broadcast_object_list(scores)
self.log(f'{phase}/score', scores[0], prog_bar=True, rank_zero_only=True)
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, phase='test')
def predict_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
num_training_steps = self.trainer.num_training_steps
self.print(f'Num training steps: {num_training_steps}')
num_warmup_steps = int(num_training_steps * self.args.warmup_ratio)
# parameters = list(self.encoder.parameters()) + list(self.decoder.parameters())
optimizer = torch.optim.AdamW(self.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
scheduler = get_scheduler(self.args.scheduler, optimizer, num_warmup_steps, num_training_steps)
return {'optimizer': optimizer, 'lr_scheduler': {'scheduler': scheduler, 'interval': 'step'}}
class ReactionExtractorPix2Seq(ReactionExtractor):
def __init__(self, args, tokenizer):
super(ReactionExtractor, self).__init__()
self.args = args
self.tokenizer = tokenizer
self.format = args.format
self.model = build_pix2seq_model(args, tokenizer[self.format])
self.criterion = Criterion(args, tokenizer)
self.molscribe = None
def training_step(self, batch, batch_idx):
indices, images, refs = batch
format = self.format
results = {format: (self.model(images, refs[format]), refs[format+'_out'][0][:, 1:])}
losses = self.criterion(results, refs)
loss = sum(losses.values())
self.log('train/loss', loss)
self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
indices, images, refs = batch
format = self.format
batch_preds = {format: [], 'file_name': []}
pred_seqs, pred_scores = self.model(images, max_len=self.tokenizer[format].max_len)
for i, (seqs, scores) in enumerate(zip(pred_seqs, pred_scores)):
if format == 'reaction':
reactions = self.tokenizer[format].sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs['scale'][i])
reactions = postprocess_reactions(reactions)
batch_preds[format].append(reactions)
if format == 'bbox':
bboxes = self.tokenizer[format].sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs['scale'][i])
batch_preds[format].append(bboxes)
batch_preds['file_name'].append(refs['file_name'][i])
return indices, batch_preds
class ReactionDataModule(LightningDataModule):
def __init__(self, args, tokenizer):
super().__init__()
self.args = args
self.tokenizer = tokenizer
self.collate_fn = get_collate_fn(self.pad_id)
@property
def pad_id(self):
return self.tokenizer[self.args.format].PAD_ID
def prepare_data(self):
args = self.args
if args.do_train:
self.train_dataset = ReactionDataset(args, self.tokenizer, args.train_file, split='train')
if self.args.do_train or self.args.do_valid:
self.val_dataset = ReactionDataset(args, self.tokenizer, args.valid_file, split='valid')
if self.args.do_test:
self.test_dataset = ReactionDataset(args, self.tokenizer, args.test_file, split='test')
def print_stats(self):
if self.args.do_train:
print(f'Train dataset: {len(self.train_dataset)}')
if self.args.do_train or self.args.do_valid:
print(f'Valid dataset: {len(self.val_dataset)}')
if self.args.do_test:
print(f'Test dataset: {len(self.test_dataset)}')
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.train_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.val_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def test_dataloader(self):
return torch.utils.data.DataLoader(
self.test_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def _get_metric_interpolated_filepath_name(self, monitor_candidates, trainer, del_filepath=None) -> str:
filepath = self.format_checkpoint_name(monitor_candidates)
return filepath
def main():
args = get_args()
pl.seed_everything(args.seed, workers=True)
if args.debug:
args.save_path = "output/debug"
tokenizer = get_tokenizer(args)
MODEL = ReactionExtractorPix2Seq if args.pix2seq else ReactionExtractor
if args.do_train:
model = MODEL(args, tokenizer)
else:
model = MODEL.load_from_checkpoint(os.path.join(args.save_path, 'checkpoints/best.ckpt'), strict=False,
args=args, tokenizer=tokenizer)
dm = ReactionDataModule(args, tokenizer)
dm.prepare_data()
dm.print_stats()
checkpoint = ModelCheckpoint(monitor='val/score', mode='max', save_top_k=1, filename='best', save_last=True)
# checkpoint = ModelCheckpoint(monitor=None, save_top_k=0, save_last=True)
lr_monitor = LearningRateMonitor(logging_interval='step')
logger = pl.loggers.TensorBoardLogger(args.save_path, name='', version='')
trainer = pl.Trainer(
strategy=DDPStrategy(find_unused_parameters=False),
accelerator='gpu',
devices=4,
logger=logger,
default_root_dir=args.save_path,
callbacks=[checkpoint, lr_monitor],
max_epochs=args.epochs,
gradient_clip_val=args.max_grad_norm,
accumulate_grad_batches=args.gradient_accumulation_steps,
check_val_every_n_epoch=args.eval_per_epoch,
log_every_n_steps=10,
deterministic=True)
if args.do_train:
trainer.num_training_steps = math.ceil(
len(dm.train_dataset) / (args.batch_size * args.gpus * args.gradient_accumulation_steps)) * args.epochs
model.eval_dataset = dm.val_dataset
ckpt_path = os.path.join(args.save_path, 'checkpoints/last.ckpt') if args.resume else None
trainer.fit(model, datamodule=dm, ckpt_path=ckpt_path)
model = MODEL.load_from_checkpoint(checkpoint.best_model_path, args=args, tokenizer=tokenizer)
if args.do_valid:
model.eval_dataset = dm.val_dataset
trainer.validate(model, datamodule=dm)
if args.do_test:
model.eval_dataset = dm.test_dataset
trainer.test(model, datamodule=dm)
if __name__ == "__main__":
main()