RxnIM / mllm /models /shikra /shikra.py
CYF200127's picture
Upload 235 files
3e1d9f3 verified
from typing import List, Optional, Tuple, Union
from PIL import Image
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torchvision.transforms.functional as TF
from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM, CLIPVisionModel, CLIPImageProcessor,AutoImageProcessor, DeformableDetrModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
Rxn_st = "<Rxn/st>"
Rxn_ed = "<Rxn/ed>" # Reaction
Rct_st = "<Rct/st>"
Rct_ed = "<Rct/ed>" # Reactant
Prd_st = "<Prd/st> "
Prd_ed = "<Prd/ed>" # Product
Cnd_st = "<Cnd/st>"
Cnd_ed = "<Cnd/ed>"
Mol = "[Str]" # Molecule
Txt = "[Txt]" # Text
Sol = "[Sol]"
Age = "[Age]"
Tem = "[Tem]"
Yld = "[Yld]"
Obj = "[Obj]"
rxn_tokens = [Rxn_st, Rxn_ed,Rct_st, Rct_ed, Prd_st, Prd_ed, Cnd_st, Cnd_ed, Mol, Txt,Sol,Age,Tem, Yld, Obj]
number_tokens = [f"{i:03}" for i in range(1, 1000)]
ID_tokens = [f"<ID_{i}>" for i in range(1, 51)]
def resize_batch(images, size):
"""
Resize a batch of images to the given size.
Args:
- images (torch.Tensor): Input tensor of shape (B, C, H, W)
- size (tuple): Desired output size (new_h, new_w)
Returns:
- torch.Tensor: Resized images of shape (B, C, new_h, new_w)
"""
resized_images = []
for image in images:
# Resize image and add it to the list
resized = TF.resize(image, size, interpolation=Image.BICUBIC)
resized_images.append(resized)
# Stack all resized images along the batch dimension
return torch.stack(resized_images)
class VisionLanguageAdapter(nn.Module):
def __init__(self, feature_dim=1280, num_queries=256, num_heads=16):
super(VisionLanguageAdapter, self).__init__()
self.num_queries = num_queries
self.query_embeds = nn.Parameter(torch.randn(num_queries, feature_dim))
self.cross_attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads, batch_first=True)
self.positional_encoding = nn.Parameter(torch.randn(num_queries, feature_dim))
self.layer_norm = nn.LayerNorm(feature_dim)
self.linear = nn.Linear(feature_dim, 5120)
def forward(self, image_features):
# Add positional encoding to query embeddings
query_embeds = self.query_embeds + self.positional_encoding
# Flag to check if input was unbatched
was_unbatched = image_features.dim() == 2
# Adjust dimensions based on whether input is batched or unbatched
if was_unbatched:
# For unbatched input, add a batch dimension for compatibility
image_features = image_features.unsqueeze(0)
query_embeds = query_embeds.unsqueeze(0)
else:
# For batched input, adjust the query embeddings to match the batch size
batch_size = image_features.size(0)
query_embeds = query_embeds.unsqueeze(0).expand(batch_size, -1, -1)
# Apply cross attention
attn_output, _ = self.cross_attention(query=query_embeds, key=image_features, value=image_features)
attn_output = self.layer_norm(attn_output)
attn_output = self.linear(attn_output)
# If the input was unbatched, remove the batch dimension from the output
if was_unbatched:
attn_output = attn_output.squeeze(0)
return attn_output
class ShikraConfig(LlamaConfig):
model_type = "shikra"
class ShikraLlamaModel(LlamaModel):
config_class = ShikraConfig
def __init__(self, config: LlamaConfig, mm_vision_tower=None, mm_hidden_size=None):
super(ShikraLlamaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
# HACK: for FSDP
self.vision_tower = nn.ModuleList([DeformableDetrModel.from_pretrained(config.mm_vision_tower)])
#self.vision_tower = nn.ModuleList([CLIPVisionModel.from_pretrained(config.mm_vision_tower)])
if hasattr(config, "use_mm_proj"):
self.mm_projector = nn.Linear(256, config.hidden_size)
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False):
self.config.mm_vision_tower = vision_tower
image_processor = AutoImageProcessor.from_pretrained(vision_tower)
#image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
if not hasattr(self, 'vision_tower'):
vision_tower = DeformableDetrModel.from_pretrained(vision_tower)
#vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
self.vision_tower = nn.ModuleList([vision_tower]) # 使用 ModuleList 包装模型
else:
self.vision_tower[0] = DeformableDetrModel.from_pretrained(vision_tower)
#self.vision_tower[0] = CLIPVisionModel.from_pretrained(vision_tower)# 直接赋值到 ModuleList 中的相应位置
# 设置模型为训练模式
self.vision_tower[0].requires_grad_(True)
self.vision_tower[0] = self.vision_tower[0].to(torch.float16)
vision_config = self.vision_tower[0].config
num_patches = 300
self.config.use_mm_proj = True
self.config.mm_hidden_size = 256
self.config.mm_vision_select_layer = mm_vision_select_layer
if not hasattr(self, 'mm_projector'):
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
return dict(
image_processor=image_processor,
image_token_len=num_patches,
vision_config=vision_config
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
# if orig_embeds_params is not None:
# orig_embeds_params = orig_embeds_params[0]
# with torch.no_grad():
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower = getattr(self, 'vision_tower', None)
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
# TODO: this is a modified multimodal LLM -- Haotian Liu
vision_tower = vision_tower[0] # HACK: for FSDP
new_size = (1333, 1333)
images = resize_batch(images, new_size)
with torch.no_grad():
if type(images) is list:
# variable length images
image_features = []
for image in images:
image_forward_out = vision_tower(image.unsqueeze(0))
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
image_feature = image_forward_out.last_hidden_state
# image_feature = select_hidden_state[:, 1:]
image_features.append(image_feature)
#print(image_features.shape)
else:
#print(images.shape)
image_forward_outs = vision_tower(images)
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
image_features = image_forward_outs.last_hidden_state
# print(image_features.shape)
# image_forward_outs = vision_tower(images, output_hidden_states=True)
# select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
# select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
# image_features = select_hidden_state[:, 1:]
if type(images) is list:
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
else:
image_features = self.mm_projector(image_features)
dummy_image_features = torch.zeros(300, 256, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
dummy_image_features = self.mm_projector(dummy_image_features)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if vision_tower.config.use_im_start_end:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (
cur_input_ids == vision_tower.config.im_end_token).sum():
raise ValueError("The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
raise ValueError("The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(),
cur_input_embeds[image_start_token_pos:image_start_token_pos + 1],
cur_image_features, cur_input_embeds[
image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2],
cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos + 1], cur_image_features,
cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
mask_index_start = masked_indices[0]
if (masked_indices != torch.arange(mask_index_start, mask_index_start + num_patches, device=masked_indices.device,
dtype=masked_indices.dtype)).any():
raise ValueError("The image patch tokens should be consecutive.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features,
cur_input_embeds[mask_index_start + num_patches:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start + num_patches:]),
dim=0)
new_input_embeds.append(cur_new_input_embeds)
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return super(ShikraLlamaModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
class ShikraLlamaForCausalLM(LlamaForCausalLM):
config_class = ShikraConfig
def __init__(self, config: ShikraConfig):
super(LlamaForCausalLM, self).__init__(config)
self.model = ShikraLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
images=images
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
vision_config = self.model.vision_tower[0].config
vision_config.use_im_start_end = mm_use_im_start_end
tokenizer.add_tokens(rxn_tokens)
tokenizer.add_tokens(ID_tokens)
#tokenizer.add_tokens(number_tokens)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.model.orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]