|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
import transformers |
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb |
|
|
|
from einops import rearrange |
|
|
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func |
|
from flash_attn.bert_padding import unpad_input, pad_input |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel |
|
|
|
attention_mask: [bsz, q_len] |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view( |
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
offset = 0 |
|
if past_key_value is not None: |
|
offset = past_key_value[0].shape[-2] |
|
kv_seq_len += offset |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, |
|
key_states, |
|
cos, |
|
sin, |
|
offset=offset) |
|
|
|
assert not output_attentions, "output_attentions is not supported" |
|
assert not use_cache, "use_cache is not supported" |
|
assert past_key_value is None, "past_key_value is not supported" |
|
|
|
|
|
|
|
|
|
|
|
qkv = torch.stack([query_states, key_states, value_states], dim=2) |
|
qkv = qkv.transpose(1, 3) |
|
|
|
|
|
key_padding_mask = attention_mask |
|
|
|
if key_padding_mask is None: |
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...') |
|
max_s = q_len |
|
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, |
|
device=qkv.device) |
|
output = flash_attn_unpadded_qkvpacked_func( |
|
qkv, cu_q_lens, max_s, 0.0, |
|
softmax_scale=None, causal=True |
|
) |
|
output = rearrange(output, '(b s) ... -> b s ...', b=bsz) |
|
else: |
|
nheads = qkv.shape[-2] |
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)') |
|
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) |
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) |
|
output_unpad = flash_attn_unpadded_qkvpacked_func( |
|
x_unpad, cu_q_lens, max_s, 0.0, |
|
softmax_scale=None, causal=True |
|
) |
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), |
|
indices, bsz, q_len), |
|
'b s (h d) -> b s h d', h=nheads) |
|
return self.o_proj(rearrange(output, |
|
'b s h d -> b s (h d)')), None, None |
|
|
|
|
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, |
|
inputs_embeds, past_key_values_length): |
|
|
|
return attention_mask |
|
|
|
|
|
def replace_llama_attn_with_flash_attn(): |
|
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask |
|
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward |
|
|