File size: 14,994 Bytes
732e363 6aed907 732e363 8f4e42e 732e363 6aed907 732e363 aeb0f96 732e363 6aed907 732e363 6aed907 732e363 6aed907 732e363 6aed907 732e363 6aed907 732e363 6aed907 732e363 8f4e42e 732e363 d8248d0 6aed907 d8248d0 732e363 aeb0f96 732e363 6aed907 d2429ca 6aed907 732e363 8f4e42e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# -*- coding: UTF-8 -*-
"""
Created on 02.02.24
Module for raw ROUGE score calculation from:
@inproceedings{straka-etal-2018-sumeczech,
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
author = "Straka, Milan and
Mediankin, Nikita and
Kocmi, Tom and
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Hude{\v{c}}ek, Vojt{\v{e}}ch and
Haji{\v{c}}, Jan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1551",
}
:author: Martin DoΔekal
"""
import collections
import re
from typing import Sequence, Optional
import datasets
import evaluate
import numpy as np
class AggregateScore(collections.namedtuple("AggregateScore", ["low", "mid", "high"])):
"""
Tuple containing confidence intervals for scores.
Taken from: https://github.com/google-research/google-research/blob/master/rouge/scoring.py
"""
class Score(
collections.namedtuple("Score", ["precision", "recall", "fmeasure"])):
"""Tuple containing precision, recall, and f-measure values."""
class BootstrapAggregator(object):
"""Aggregates scores to provide confidence intervals.
Taken from: https://github.com/google-research/google-research/blob/master/rouge/scoring.py
Sample usage:
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'])
aggregator = Aggregator()
aggregator.add_scores(scorer.score("one two three", "one two"))
aggregator.add_scores(scorer.score("one two five six", "seven eight"))
result = aggregator.aggregate()
print result
{'rougeL': AggregateScore(
low=Score(precision=0.0, recall=0.0, fmeasure=0.0),
mid=Score(precision=0.5, recall=0.33, fmeasure=0.40),
high=Score(precision=1.0, recall=0.66, fmeasure=0.80)),
'rouge1': AggregateScore(
low=Score(precision=0.0, recall=0.0, fmeasure=0.0),
mid=Score(precision=0.5, recall=0.33, fmeasure=0.40),
high=Score(precision=1.0, recall=0.66, fmeasure=0.80))}
"""
def __init__(self, confidence_interval=0.95, n_samples=1000):
"""Initializes a BootstrapAggregator object.
Args:
confidence_interval: Confidence interval to compute on the mean as a
decimal.
n_samples: Number of samples to use for bootstrap resampling.
Raises:
ValueError: If invalid argument is given.
"""
if confidence_interval < 0 or confidence_interval > 1:
raise ValueError("confidence_interval must be in range [0, 1]")
if n_samples <= 0:
raise ValueError("n_samples must be positive")
self._n_samples = n_samples
self._confidence_interval = confidence_interval
self._scores = collections.defaultdict(list)
def add_scores(self, scores):
"""Adds a sample for future aggregation.
Args:
scores: Dict mapping score_type strings to a namedtuple object/class
representing a score.
"""
for score_type, score in scores.items():
self._scores[score_type].append(score)
def aggregate(self):
"""Aggregates scores previously added using add_scores.
Returns:
A dict mapping score_type to AggregateScore objects.
"""
result = {}
for score_type, scores in self._scores.items():
# Stack scores into a 2-d matrix of (sample, measure).
score_matrix = np.vstack(tuple(scores))
# Percentiles are returned as (interval, measure).
percentiles = self._bootstrap_resample(score_matrix)
# Extract the three intervals (low, mid, high).
intervals = tuple(
(scores[0].__class__(*percentiles[j, :]) for j in range(3)))
result[score_type] = AggregateScore(
low=intervals[0], mid=intervals[1], high=intervals[2])
return result
def _bootstrap_resample(self, matrix):
"""Performs bootstrap resampling on a matrix of scores.
Args:
matrix: A 2-d matrix of (sample, measure).
Returns:
A 2-d matrix of (bounds, measure). There are three bounds: low (row 0),
mid (row 1) and high (row 2). Mid is always the mean, while low and high
bounds are specified by self._confidence_interval (which defaults to 0.95
meaning it will return the 2.5th and 97.5th percentiles for a 95%
confidence interval on the mean).
"""
# Matrix of (bootstrap sample, measure).
sample_mean = np.zeros((self._n_samples, matrix.shape[1]))
for i in range(self._n_samples):
sample_idx = np.random.choice(
np.arange(matrix.shape[0]), size=matrix.shape[0])
sample = matrix[sample_idx, :]
sample_mean[i, :] = np.mean(sample, axis=0)
# Take percentiles on the estimate of the mean using bootstrap samples.
# Final result is a (bounds, measure) matrix.
percentile_delta = (1 - self._confidence_interval) / 2
q = 100 * np.array([percentile_delta, 0.5, 1 - percentile_delta])
return np.percentile(sample_mean, q, axis=0)
class RougeRawOriginal:
"""
This is the original implementation of the ROUGERaw metric.
Compute RougeRAW-1, RougeRAW-2, RougeRAW-L metrics.
"""
class FScore:
"""F1 score representation."""
def __init__(self, correct, gold, system):
self.p = correct / system if system else 0.
self.r = correct / gold if gold else 0.
self.f = 2 * correct / (system + gold) if system + gold else 0.
def _rouge_n(self, n, gold_words, system_words):
"""Compute Rouge-n for given words."""
def n_grams(n, words):
ngrams = {}
total = 0
for i in range(len(words) - n + 1):
ngram = "\t".join(words[i:i + n])
ngrams[ngram] = 1 + ngrams.get(ngram, 0)
total += 1
return ngrams, total
gold_ngrams, gold_total = n_grams(n, gold_words)
system_ngrams, system_total = n_grams(n, system_words)
intersection = 0
for ngram in system_ngrams:
intersection += min(system_ngrams[ngram], gold_ngrams.get(ngram, 0))
return self.FScore(intersection, gold_total, system_total)
def _rouge_l(self, gold_words, system_words):
"""Compute Rouge-L for given words."""
lcs = [[0] * len(system_words) for _ in gold_words]
for r in range(len(gold_words)):
for s in range(len(system_words)):
if gold_words[r] == system_words[s]:
lcs[r][s] = 1 + (lcs[r - 1][s - 1] if r and s else 0)
lcs[r][s] = max(lcs[r][s], lcs[r - 1][s] if r else 0)
lcs[r][s] = max(lcs[r][s], lcs[r][s - 1] if s else 0)
return self.FScore(lcs[-1][-1], len(gold_words), len(system_words))
def _tokenize(self, text):
"""Tokenize given text."""
return re.sub(r"\s+", " ", re.sub(r"\b", " ", text, re.UNICODE), re.UNICODE).strip().split(" ")
def document(self, gold, system):
"""Compute RougeRAW-1, RougeRAW-2, RougeRAW-L for given documents.
Each document should be a string.
"""
assert isinstance(gold, str) and isinstance(system, str), "Expected string arguments"
lc_gold_words = [word.lower() for word in self._tokenize(gold)]
lc_system_words = [word.lower() for word in self._tokenize(system)]
return {
"1": self._rouge_n(1, lc_gold_words, lc_system_words),
"2": self._rouge_n(2, lc_gold_words, lc_system_words),
"L": self._rouge_l(lc_gold_words, lc_system_words),
}
def corpus(self, gold, system, aggregate=True):
"""Compute RougeRAW-1, RougeRAW-2, RougeRAW-L for given corpora.
Each corpus should be a collection of documents, each document a string.
If aggregate is True, the lower, mid, and upper bounds of the confidence interval are returned.
"""
assert isinstance(gold, list) and isinstance(system, list), "Expected list arguments"
assert len(gold) == len(system), "Given corpora should be of the same length"
if aggregate:
aggregator = BootstrapAggregator()
else:
rouge = {key: self.FScore(0, 0, 0) for key in ["1", "2", "L"]}
if len(gold):
for gold_document, system_document in zip(gold, system):
for key, value in self.document(gold_document, system_document).items():
if aggregate:
aggregator.add_scores({
key: Score(precision=value.p, recall=value.r, fmeasure=value.f)
})
else:
rouge[key].p += value.p
rouge[key].r += value.r
rouge[key].f += value.f
if not aggregate:
for key in rouge:
rouge[key].p /= len(gold)
rouge[key].r /= len(gold)
rouge[key].f /= len(gold)
if aggregate:
rouge = {}
# convert the named tuple to a dict
for k, ag_score in aggregator.aggregate().items():
rouge[k + "_low_precision"] = float(ag_score.low.precision)
rouge[k + "_low_recall"] = float(ag_score.low.recall)
rouge[k + "_low_fmeasure"] = float(ag_score.low.fmeasure)
rouge[k + "_mid_precision"] = float(ag_score.mid.precision)
rouge[k + "_mid_recall"] = float(ag_score.mid.recall)
rouge[k + "_mid_fmeasure"] = float(ag_score.mid.fmeasure)
rouge[k + "_high_precision"] = float(ag_score.high.precision)
rouge[k + "_high_recall"] = float(ag_score.high.recall)
rouge[k + "_high_fmeasure"] = float(ag_score.high.fmeasure)
return rouge
_CITATION = """\
@inproceedings{straka-etal-2018-sumeczech,
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
author = "Straka, Milan and
Mediankin, Nikita and
Kocmi, Tom and
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Hude{\v{c}}ek, Vojt{\v{e}}ch and
Haji{\v{c}}, Jan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1551",
}
"""
_DESCRIPTION = """\
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words and synonymas.
This is a wrapper around the original http://hdl.handle.net/11234/1-2615 script.
"""
_KWARGS_DESCRIPTION = """
ROCUE RAW metric for list of predictions and references.
Args:
predictions: list of predictions to evaluate. Each prediction should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces.
select: (Optional) string. The name of the metric to return. One of: 'rougeraw1_precision', 'rougeraw1_recall', 'rougeraw1_fmeasure', 'rougeraw2_precision', 'rougeraw2_recall', 'rougeraw2_fmeasure', 'rougerawl_precision', 'rougerawl_recall', 'rougerawl_fmeasure'.
If None, all metrics are returned as a dictionary.
Returns:
This metric outputs a dictionary, containing the scores.
There are precision, recall, F1 values for rougeraw-1, rougeraw-2 and rougeraw-l. By default the bootstrapped confidence intervals are calculated, meaning that for each metric there are low, mid , high values specifying the confidence interval.
Key format:
```
{1|2|l}_{low|mid|high}_{precision|recall|fmeasure}
e.g.: 1_low_precision
```
If aggregate is False the format is:
```
{1|2|l}_{precision|recall|fmeasure}
e.g.: 1_precision
```
Examples:
>>> rougeraw = evaluate.load('CZLC/rouge_raw')
>>> predictions = ["the cat is on the mat", "hello there"]
>>> references = ["the cat is on the mat", "hello there"]
>>> results = rougeraw.compute(predictions=predictions, references=references)
>>> print(results)
{'rougeraw1_precision': 1.0, 'rougeraw1_recall': 1.0, 'rougeraw1_fmeasure': 1.0, 'rougeraw2_precision': 1.0, 'rougeraw2_recall': 1.0, 'rougeraw2_fmeasure': 1.0, 'rougerawl_precision': 1.0, 'rougerawl_recall': 1.0, 'rougerawl_fmeasure': 1.0}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class RougeRaw(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
reference_urls=[
"http://hdl.handle.net/11234/1-2615",
],
)
def _compute(self, predictions: Sequence[str], references: Sequence[str], select: Optional[str] = None,
aggregate: bool = True):
res = RougeRawOriginal().corpus(references, predictions, aggregate=aggregate)
if not aggregate:
res = {
"1_precision": res["1"].p,
"1_recall": res["1"].r,
"1_fmeasure": res["1"].f,
"2_precision": res["2"].p,
"2_recall": res["2"].r,
"2_fmeasure": res["2"].f,
"L_precision": res["L"].p,
"L_recall": res["L"].r,
"L_fmeasure": res["L"].f,
}
if select is not None:
return res[select]
return res
|