Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import torch
|
6 |
+
from torchvision import models, transforms
|
7 |
+
|
8 |
+
# 加载预训练的ResNet-50模型
|
9 |
+
model = models.resnet50(pretrained=True)
|
10 |
+
model.eval() # 设置模型为评估模式
|
11 |
+
|
12 |
+
# 图像预处理
|
13 |
+
preprocess = transforms.Compose([
|
14 |
+
transforms.Resize(256),
|
15 |
+
transforms.CenterCrop(224),
|
16 |
+
transforms.ToTensor(),
|
17 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
18 |
+
])
|
19 |
+
|
20 |
+
# 创建FastAPI应用实例
|
21 |
+
app = FastAPI()
|
22 |
+
|
23 |
+
@app.post("/predict/")
|
24 |
+
async def predict(file: UploadFile = File(...)):
|
25 |
+
contents = await file.read()
|
26 |
+
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
27 |
+
|
28 |
+
# 预处理图片
|
29 |
+
input_tensor = preprocess(image)
|
30 |
+
input_batch = input_tensor.unsqueeze(0) # 添加批处理维度
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
output = model(input_batch)
|
34 |
+
|
35 |
+
# 获取预测结果
|
36 |
+
_, predicted_idx = torch.max(output, 1)
|
37 |
+
|
38 |
+
# 可以在此处添加代码来获取类别名称,这里只返回索引
|
39 |
+
return JSONResponse(content={"predicted_class": int(predicted_idx[0])})
|
40 |
+
|
41 |
+
# 运行服务
|
42 |
+
if __name__ == "__main__":
|
43 |
+
import uvicorn
|
44 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|