Spaces:
Running
on
Zero
Running
on
Zero
feiyang-cai
commited on
Commit
·
2dc971f
1
Parent(s):
63859b8
update the descriptions
Browse files- dataset_descriptions.json +44 -0
dataset_descriptions.json
CHANGED
@@ -1,112 +1,156 @@
|
|
1 |
{
|
2 |
"ADMET_Caco2_Wang": {
|
3 |
"task_type": "regression",
|
|
|
4 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
|
|
5 |
"num_molecules": 906
|
6 |
},
|
7 |
"ADMET_Bioavailability_Ma": {
|
8 |
"task_type": "classification",
|
|
|
9 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
|
|
10 |
"num_molecules": 640
|
11 |
},
|
12 |
"ADMET_Lipophilicity_AstraZeneca": {
|
13 |
"task_type": "regression",
|
|
|
14 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
|
|
15 |
"num_molecules": 4200
|
16 |
},
|
17 |
"ADMET_Solubility_AqSolDB": {
|
18 |
"task_type": "regression",
|
|
|
19 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
|
|
20 |
"num_molecules": 9982
|
21 |
},
|
22 |
"ADMET_HIA_Hou": {
|
23 |
"task_type": "classification",
|
|
|
24 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
|
|
25 |
"num_molecules": 578
|
26 |
},
|
27 |
"ADMET_Pgp_Broccatelli": {
|
28 |
"task_type": "classification",
|
|
|
29 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
|
|
30 |
"num_molecules": 1212
|
31 |
},
|
32 |
"ADMET_BBB_Martins": {
|
33 |
"task_type": "classification",
|
|
|
34 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
|
|
35 |
"num_molecules": 1915
|
36 |
},
|
37 |
"ADMET_PPBR_AZ": {
|
38 |
"task_type": "regression",
|
|
|
39 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
|
|
40 |
"num_molecules": 1797
|
41 |
},
|
42 |
"ADMET_VDss_Lombardo": {
|
43 |
"task_type": "regression",
|
|
|
44 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
|
|
45 |
"num_molecules": 1130
|
46 |
},
|
47 |
"ADMET_CYP2C9_Veith": {
|
48 |
"task_type": "classification",
|
|
|
49 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
|
|
50 |
"num_molecules": 12092
|
51 |
},
|
52 |
"ADMET_CYP2D6_Veith": {
|
53 |
"task_type": "classification",
|
|
|
54 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
|
|
55 |
"num_molecules": 13130
|
56 |
},
|
57 |
"ADMET_CYP3A4_Veith": {
|
58 |
"task_type": "classification",
|
|
|
59 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
|
|
60 |
"num_molecules": 12328
|
61 |
},
|
62 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
63 |
"task_type": "classification",
|
|
|
64 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
65 |
"num_molecules": 666
|
66 |
},
|
67 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
68 |
"task_type": "classification",
|
|
|
69 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
70 |
"num_molecules": 664
|
71 |
},
|
72 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
73 |
"task_type": "classification",
|
|
|
74 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
|
|
75 |
"num_molecules": 667
|
76 |
},
|
77 |
"ADMET_Half_Life_Obach": {
|
78 |
"task_type": "regression",
|
|
|
79 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
|
|
80 |
"num_molecules": 667
|
81 |
},
|
82 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
83 |
"task_type": "regression",
|
|
|
84 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
|
|
85 |
"num_molecules": 1020
|
86 |
},
|
87 |
"ADMET_Clearance_Microsome_AZ": {
|
88 |
"task_type": "regression",
|
|
|
89 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
|
|
90 |
"num_molecules": 1102
|
91 |
},
|
92 |
"ADMET_LD50_Zhu": {
|
93 |
"task_type": "regression",
|
|
|
94 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
|
|
95 |
"num_molecules": 7385
|
96 |
},
|
97 |
"ADMET_hERG": {
|
98 |
"task_type": "classification",
|
|
|
99 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
|
|
100 |
"num_molecules": 648
|
101 |
},
|
102 |
"ADMET_AMES": {
|
103 |
"task_type": "classification",
|
|
|
104 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
|
|
105 |
"num_molecules": 7255
|
106 |
},
|
107 |
"ADMET_DILI": {
|
108 |
"task_type": "classification",
|
|
|
109 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
|
|
110 |
"num_molecules": 475
|
111 |
}
|
112 |
}
|
|
|
1 |
{
|
2 |
"ADMET_Caco2_Wang": {
|
3 |
"task_type": "regression",
|
4 |
+
"task_name": "Drug Permeability",
|
5 |
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
|
6 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
|
7 |
"num_molecules": 906
|
8 |
},
|
9 |
"ADMET_Bioavailability_Ma": {
|
10 |
"task_type": "classification",
|
11 |
+
"task_name": "Drug Oral Bioavailability",
|
12 |
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
|
13 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
|
14 |
"num_molecules": 640
|
15 |
},
|
16 |
"ADMET_Lipophilicity_AstraZeneca": {
|
17 |
"task_type": "regression",
|
18 |
+
"task_name": "Drug Lipophilicity",
|
19 |
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
|
20 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
|
21 |
"num_molecules": 4200
|
22 |
},
|
23 |
"ADMET_Solubility_AqSolDB": {
|
24 |
"task_type": "regression",
|
25 |
+
"task_name": "Drug Aqueous Solubility",
|
26 |
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
|
27 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
|
28 |
"num_molecules": 9982
|
29 |
},
|
30 |
"ADMET_HIA_Hou": {
|
31 |
"task_type": "classification",
|
32 |
+
"task_name": "Drug Human Intestinal Absorption",
|
33 |
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
|
34 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
|
35 |
"num_molecules": 578
|
36 |
},
|
37 |
"ADMET_Pgp_Broccatelli": {
|
38 |
"task_type": "classification",
|
39 |
+
"task_name": "P-glycoprotein Inhibition",
|
40 |
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
|
41 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
|
42 |
"num_molecules": 1212
|
43 |
},
|
44 |
"ADMET_BBB_Martins": {
|
45 |
"task_type": "classification",
|
46 |
+
"task_name": "Blood-Brain Barrier Permeability",
|
47 |
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
|
48 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
|
49 |
"num_molecules": 1915
|
50 |
},
|
51 |
"ADMET_PPBR_AZ": {
|
52 |
"task_type": "regression",
|
53 |
+
"task_name": "Plasma Protein Binding Rate",
|
54 |
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
|
55 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
|
56 |
"num_molecules": 1797
|
57 |
},
|
58 |
"ADMET_VDss_Lombardo": {
|
59 |
"task_type": "regression",
|
60 |
+
"task_name": "Volume of Distribution at Steady State",
|
61 |
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
|
62 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
|
63 |
"num_molecules": 1130
|
64 |
},
|
65 |
"ADMET_CYP2C9_Veith": {
|
66 |
"task_type": "classification",
|
67 |
+
"task_name": "CYP2C9 Inhibition",
|
68 |
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
|
69 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
|
70 |
"num_molecules": 12092
|
71 |
},
|
72 |
"ADMET_CYP2D6_Veith": {
|
73 |
"task_type": "classification",
|
74 |
+
"task_name": "CYP2D6 Inhibition",
|
75 |
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
|
76 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
|
77 |
"num_molecules": 13130
|
78 |
},
|
79 |
"ADMET_CYP3A4_Veith": {
|
80 |
"task_type": "classification",
|
81 |
+
"task_name": "CPY3A4 Inhibition",
|
82 |
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
|
83 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
|
84 |
"num_molecules": 12328
|
85 |
},
|
86 |
"ADMET_CYP2C9_Substrate_CarbonMangels": {
|
87 |
"task_type": "classification",
|
88 |
+
"task_name": "CYP2C9 Substrate",
|
89 |
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
|
90 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
|
91 |
"num_molecules": 666
|
92 |
},
|
93 |
"ADMET_CYP2D6_Substrate_CarbonMangels": {
|
94 |
"task_type": "classification",
|
95 |
+
"task_name": "CYP2D6 Substrate",
|
96 |
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
|
97 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
|
98 |
"num_molecules": 664
|
99 |
},
|
100 |
"ADMET_CYP3A4_Substrate_CarbonMangels": {
|
101 |
"task_type": "classification",
|
102 |
+
"task_name": "CYP3A4 Substrate",
|
103 |
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
|
104 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
|
105 |
"num_molecules": 667
|
106 |
},
|
107 |
"ADMET_Half_Life_Obach": {
|
108 |
"task_type": "regression",
|
109 |
+
"task_name": "Drug Half-Life Duration",
|
110 |
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
|
111 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
|
112 |
"num_molecules": 667
|
113 |
},
|
114 |
"ADMET_Clearance_Hepatocyte_AZ": {
|
115 |
"task_type": "regression",
|
116 |
+
"task_name": "Drug Clearance from Hepatocyte Experiments",
|
117 |
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
|
118 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
119 |
"num_molecules": 1020
|
120 |
},
|
121 |
"ADMET_Clearance_Microsome_AZ": {
|
122 |
"task_type": "regression",
|
123 |
+
"task_name": "Drug Clearance from Microsome Experiments",
|
124 |
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
|
125 |
+
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
|
126 |
"num_molecules": 1102
|
127 |
},
|
128 |
"ADMET_LD50_Zhu": {
|
129 |
"task_type": "regression",
|
130 |
+
"task_name": "Drug Acute Toxicity",
|
131 |
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
|
132 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
|
133 |
"num_molecules": 7385
|
134 |
},
|
135 |
"ADMET_hERG": {
|
136 |
"task_type": "classification",
|
137 |
+
"task_name": "hERG Channel Blockage",
|
138 |
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
|
139 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
|
140 |
"num_molecules": 648
|
141 |
},
|
142 |
"ADMET_AMES": {
|
143 |
"task_type": "classification",
|
144 |
+
"task_name": "Drug Mutagenicity",
|
145 |
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
|
146 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
|
147 |
"num_molecules": 7255
|
148 |
},
|
149 |
"ADMET_DILI": {
|
150 |
"task_type": "classification",
|
151 |
+
"task_name": "Drug-Induced Liver Injury",
|
152 |
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
|
153 |
+
"url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
|
154 |
"num_molecules": 475
|
155 |
}
|
156 |
}
|