feiyang-cai commited on
Commit
2dc971f
·
1 Parent(s): 63859b8

update the descriptions

Browse files
Files changed (1) hide show
  1. dataset_descriptions.json +44 -0
dataset_descriptions.json CHANGED
@@ -1,112 +1,156 @@
1
  {
2
  "ADMET_Caco2_Wang": {
3
  "task_type": "regression",
 
4
  "description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
 
5
  "num_molecules": 906
6
  },
7
  "ADMET_Bioavailability_Ma": {
8
  "task_type": "classification",
 
9
  "description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
 
10
  "num_molecules": 640
11
  },
12
  "ADMET_Lipophilicity_AstraZeneca": {
13
  "task_type": "regression",
 
14
  "description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
 
15
  "num_molecules": 4200
16
  },
17
  "ADMET_Solubility_AqSolDB": {
18
  "task_type": "regression",
 
19
  "description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
 
20
  "num_molecules": 9982
21
  },
22
  "ADMET_HIA_Hou": {
23
  "task_type": "classification",
 
24
  "description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
 
25
  "num_molecules": 578
26
  },
27
  "ADMET_Pgp_Broccatelli": {
28
  "task_type": "classification",
 
29
  "description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
 
30
  "num_molecules": 1212
31
  },
32
  "ADMET_BBB_Martins": {
33
  "task_type": "classification",
 
34
  "description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
 
35
  "num_molecules": 1915
36
  },
37
  "ADMET_PPBR_AZ": {
38
  "task_type": "regression",
 
39
  "description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
 
40
  "num_molecules": 1797
41
  },
42
  "ADMET_VDss_Lombardo": {
43
  "task_type": "regression",
 
44
  "description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
 
45
  "num_molecules": 1130
46
  },
47
  "ADMET_CYP2C9_Veith": {
48
  "task_type": "classification",
 
49
  "description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
 
50
  "num_molecules": 12092
51
  },
52
  "ADMET_CYP2D6_Veith": {
53
  "task_type": "classification",
 
54
  "description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
 
55
  "num_molecules": 13130
56
  },
57
  "ADMET_CYP3A4_Veith": {
58
  "task_type": "classification",
 
59
  "description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
 
60
  "num_molecules": 12328
61
  },
62
  "ADMET_CYP2C9_Substrate_CarbonMangels": {
63
  "task_type": "classification",
 
64
  "description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
 
65
  "num_molecules": 666
66
  },
67
  "ADMET_CYP2D6_Substrate_CarbonMangels": {
68
  "task_type": "classification",
 
69
  "description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
 
70
  "num_molecules": 664
71
  },
72
  "ADMET_CYP3A4_Substrate_CarbonMangels": {
73
  "task_type": "classification",
 
74
  "description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
 
75
  "num_molecules": 667
76
  },
77
  "ADMET_Half_Life_Obach": {
78
  "task_type": "regression",
 
79
  "description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
 
80
  "num_molecules": 667
81
  },
82
  "ADMET_Clearance_Hepatocyte_AZ": {
83
  "task_type": "regression",
 
84
  "description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
 
85
  "num_molecules": 1020
86
  },
87
  "ADMET_Clearance_Microsome_AZ": {
88
  "task_type": "regression",
 
89
  "description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
 
90
  "num_molecules": 1102
91
  },
92
  "ADMET_LD50_Zhu": {
93
  "task_type": "regression",
 
94
  "description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
 
95
  "num_molecules": 7385
96
  },
97
  "ADMET_hERG": {
98
  "task_type": "classification",
 
99
  "description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
 
100
  "num_molecules": 648
101
  },
102
  "ADMET_AMES": {
103
  "task_type": "classification",
 
104
  "description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
 
105
  "num_molecules": 7255
106
  },
107
  "ADMET_DILI": {
108
  "task_type": "classification",
 
109
  "description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
 
110
  "num_molecules": 475
111
  }
112
  }
 
1
  {
2
  "ADMET_Caco2_Wang": {
3
  "task_type": "regression",
4
+ "task_name": "Drug Permeability",
5
  "description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
6
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
7
  "num_molecules": 906
8
  },
9
  "ADMET_Bioavailability_Ma": {
10
  "task_type": "classification",
11
+ "task_name": "Drug Oral Bioavailability",
12
  "description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
13
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
14
  "num_molecules": 640
15
  },
16
  "ADMET_Lipophilicity_AstraZeneca": {
17
  "task_type": "regression",
18
+ "task_name": "Drug Lipophilicity",
19
  "description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
20
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
21
  "num_molecules": 4200
22
  },
23
  "ADMET_Solubility_AqSolDB": {
24
  "task_type": "regression",
25
+ "task_name": "Drug Aqueous Solubility",
26
  "description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
27
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
28
  "num_molecules": 9982
29
  },
30
  "ADMET_HIA_Hou": {
31
  "task_type": "classification",
32
+ "task_name": "Drug Human Intestinal Absorption",
33
  "description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
34
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
35
  "num_molecules": 578
36
  },
37
  "ADMET_Pgp_Broccatelli": {
38
  "task_type": "classification",
39
+ "task_name": "P-glycoprotein Inhibition",
40
  "description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
41
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
42
  "num_molecules": 1212
43
  },
44
  "ADMET_BBB_Martins": {
45
  "task_type": "classification",
46
+ "task_name": "Blood-Brain Barrier Permeability",
47
  "description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
48
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
49
  "num_molecules": 1915
50
  },
51
  "ADMET_PPBR_AZ": {
52
  "task_type": "regression",
53
+ "task_name": "Plasma Protein Binding Rate",
54
  "description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
55
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
56
  "num_molecules": 1797
57
  },
58
  "ADMET_VDss_Lombardo": {
59
  "task_type": "regression",
60
+ "task_name": "Volume of Distribution at Steady State",
61
  "description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
62
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
63
  "num_molecules": 1130
64
  },
65
  "ADMET_CYP2C9_Veith": {
66
  "task_type": "classification",
67
+ "task_name": "CYP2C9 Inhibition",
68
  "description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
69
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
70
  "num_molecules": 12092
71
  },
72
  "ADMET_CYP2D6_Veith": {
73
  "task_type": "classification",
74
+ "task_name": "CYP2D6 Inhibition",
75
  "description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
76
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
77
  "num_molecules": 13130
78
  },
79
  "ADMET_CYP3A4_Veith": {
80
  "task_type": "classification",
81
+ "task_name": "CPY3A4 Inhibition",
82
  "description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
83
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
84
  "num_molecules": 12328
85
  },
86
  "ADMET_CYP2C9_Substrate_CarbonMangels": {
87
  "task_type": "classification",
88
+ "task_name": "CYP2C9 Substrate",
89
  "description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
90
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
91
  "num_molecules": 666
92
  },
93
  "ADMET_CYP2D6_Substrate_CarbonMangels": {
94
  "task_type": "classification",
95
+ "task_name": "CYP2D6 Substrate",
96
  "description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
97
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
98
  "num_molecules": 664
99
  },
100
  "ADMET_CYP3A4_Substrate_CarbonMangels": {
101
  "task_type": "classification",
102
+ "task_name": "CYP3A4 Substrate",
103
  "description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
104
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
105
  "num_molecules": 667
106
  },
107
  "ADMET_Half_Life_Obach": {
108
  "task_type": "regression",
109
+ "task_name": "Drug Half-Life Duration",
110
  "description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
111
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
112
  "num_molecules": 667
113
  },
114
  "ADMET_Clearance_Hepatocyte_AZ": {
115
  "task_type": "regression",
116
+ "task_name": "Drug Clearance from Hepatocyte Experiments",
117
  "description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
118
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
119
  "num_molecules": 1020
120
  },
121
  "ADMET_Clearance_Microsome_AZ": {
122
  "task_type": "regression",
123
+ "task_name": "Drug Clearance from Microsome Experiments",
124
  "description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
125
+ "url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
126
  "num_molecules": 1102
127
  },
128
  "ADMET_LD50_Zhu": {
129
  "task_type": "regression",
130
+ "task_name": "Drug Acute Toxicity",
131
  "description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
132
+ "url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
133
  "num_molecules": 7385
134
  },
135
  "ADMET_hERG": {
136
  "task_type": "classification",
137
+ "task_name": "hERG Channel Blockage",
138
  "description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
139
+ "url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
140
  "num_molecules": 648
141
  },
142
  "ADMET_AMES": {
143
  "task_type": "classification",
144
+ "task_name": "Drug Mutagenicity",
145
  "description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
146
+ "url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
147
  "num_molecules": 7255
148
  },
149
  "ADMET_DILI": {
150
  "task_type": "classification",
151
+ "task_name": "Drug-Induced Liver Injury",
152
  "description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
153
+ "url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
154
  "num_molecules": 475
155
  }
156
  }