File size: 11,364 Bytes
edaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b6a1c
edaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ad687
edaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd388a2
edaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8412583
edaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8412583
edaff0a
d87c5bb
edaff0a
 
8412583
 
 
 
d87c5bb
8412583
 
 
edaff0a
 
 
 
 
 
 
8412583
 
 
edaff0a
 
 
 
 
 
 
2a0c1ae
4294df8
8412583
 
 
 
 
 
 
 
 
 
 
 
 
 
edaff0a
 
cd388a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d87c5bb
cd388a2
edaff0a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import os
from typing import Optional, Dict, Sequence
import transformers
from peft import PeftModel
import torch
from dataclasses import dataclass, field
from huggingface_hub import hf_hub_download
import json
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
import spaces

from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')

DEFAULT_PAD_TOKEN = "[PAD]"
device_map = "cuda"

def compute_rank(prediction,raw=False,alpha=1.0):
    valid_score = [[k for k in range(len(prediction[j]))] for j in range(len(prediction))]
    invalid_rates = [0 for k in range(len(prediction[0]))]
    rank = {}
    highest = {}

    for j in range(len(prediction)):
        for k in range(len(prediction[j])):
            if prediction[j][k] == "":
                valid_score[j][k] = 10 + 1
                invalid_rates[k] += 1
        de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0] != ""]
        prediction[j] = list(set(de_error))
        prediction[j].sort(key=de_error.index)
        for k, data in enumerate(prediction[j]):
            if data in rank:
                rank[data] += 1 / (alpha * k + 1)
            else:
                rank[data] = 1 / (alpha * k + 1)
            if data in highest:
                highest[data] = min(k,highest[data])
            else:
                highest[data] = k
    return rank,invalid_rates


@dataclass
class DataCollatorForCausalLMEval(object):
    tokenizer: transformers.PreTrainedTokenizer
    source_max_len: int
    target_max_len: int
    reactant_start_str: str
    product_start_str: str
    end_str: str

    def augment_molecule(self, molecule: str) -> str:
        return self.sme.augment([molecule])[0]

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        
        srcs = instances[0]['src']
        task_type = instances[0]['task_type']

        if task_type == 'retrosynthesis':
            src_start_str = self.product_start_str
            tgt_start_str = self.reactant_start_str
        else:
            src_start_str = self.reactant_start_str
            tgt_start_str = self.product_start_str

        generation_prompts = []
        generation_prompt = f"{src_start_str}{srcs}{self.end_str}{tgt_start_str}"
        generation_prompts.append(generation_prompt)

        data_dict = {
            'generation_prompts': generation_prompts
        }
        return data_dict

def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
    non_special_tokens = None,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
    num_old_tokens = model.get_input_embeddings().weight.shape[0]
    num_new_tokens = len(tokenizer) - num_old_tokens
    if num_new_tokens == 0:
        return
    
    model.resize_token_embeddings(len(tokenizer))
    
    if num_new_tokens > 0:
        input_embeddings_data = model.get_input_embeddings().weight.data

        input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)

        input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
    print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")

class ReactionPredictionModel():
    def __init__(self, candidate_models):


        for model in candidate_models:
            if "retro" in model:
                self.tokenizer = AutoTokenizer.from_pretrained(
                    candidate_models[list(candidate_models.keys())[0]],
                    padding_side="right",
                    use_fast=True,
                    trust_remote_code=True,
                    token = os.environ.get("TOKEN")
                    )
                self.load_retro_model(candidate_models[model])
            else:
                self.tokenizer = AutoTokenizer.from_pretrained(
                    candidate_models[list(candidate_models.keys())[0]],
                    padding_side="right",
                    use_fast=True,
                    trust_remote_code=True,
                    token = os.environ.get("TOKEN")
                    )
                self.load_forward_model(candidate_models[model])

        string_template_path = hf_hub_download(candidate_models[list(candidate_models.keys())[0]], filename="string_template.json", token = os.environ.get("TOKEN"))
        string_template = json.load(open(string_template_path, 'r'))
        reactant_start_str = string_template['REACTANTS_START_STRING']
        product_start_str = string_template['PRODUCTS_START_STRING']
        end_str = string_template['END_STRING']
        self.data_collator = DataCollatorForCausalLMEval(
            tokenizer=self.tokenizer,
            source_max_len=512,
            target_max_len=512,
            reactant_start_str=reactant_start_str,
            product_start_str=product_start_str,
            end_str=end_str,
        )
                

    
    def load_retro_model(self, model_path):
        # our retro model is lora model
        config = AutoConfig.from_pretrained(
            "ChemFM/ChemFM-3B",
            trust_remote_code=True,
            token=os.environ.get("TOKEN")
        )

        base_model = AutoModelForCausalLM.from_pretrained(
            "ChemFM/ChemFM-3B",
            config=config,
            trust_remote_code=True,
            device_map=device_map,
            token = os.environ.get("TOKEN")
        )

        # we should resize the embedding layer of the base model to match the adapter's tokenizer
        special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
        smart_tokenizer_and_embedding_resize(
            special_tokens_dict=special_tokens_dict,
            tokenizer=self.tokenizer,
            model=base_model
        )
        base_model.config.pad_token_id = self.tokenizer.pad_token_id

        # load the adapter model
        self.retro_model = PeftModel.from_pretrained(
            base_model,
            model_path,
            token = os.environ.get("TOKEN")
        )

        self.retro_model.to("cuda")
        self.retro_model.eval()
    
    def load_forward_model(self, model_path):
        config = AutoConfig.from_pretrained(
            model_path,
            device_map=device_map,
            trust_remote_code=True,
            token = os.environ.get("TOKEN")
        )

        self.forward_model = AutoModelForCausalLM.from_pretrained(
                model_path,
                config=config,
                device_map=device_map,
                trust_remote_code=True,
                token = os.environ.get("TOKEN")
        )
    
        # the finetune tokenizer could be in different size with pretrain tokenizer, and also, we need to add PAD_TOKEN
        special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
        smart_tokenizer_and_embedding_resize(
            special_tokens_dict=special_tokens_dict,
            tokenizer=self.tokenizer,
            model=self.forward_model
        )
        self.forward_model.config.pad_token_id = self.tokenizer.pad_token_id
        self.forward_model.to("cuda")
        self.forward_model.eval()

    def predict(self, test_loader, task_type):
        predictions = []
        for i, batch in tqdm(enumerate(test_loader), total=len(test_loader), desc="Evaluating"):
            
            generation_prompts = batch['generation_prompts'][0]
            inputs = self.tokenizer(generation_prompts, return_tensors="pt", padding=True, truncation=True)
            del inputs['token_type_ids']

            if task_type == "retrosynthesis":
                inputs = {k: v.to(self.retro_model.device) for k, v in inputs.items()}
                with torch.no_grad():
                    outputs = self.retro_model.generate(**inputs, max_length=512, num_return_sequences=10,
                                   do_sample=False, num_beams=10,
                                   eos_token_id=self.tokenizer.eos_token_id,
                                   early_stopping='never',
                                   pad_token_id=self.tokenizer.pad_token_id,
                                   length_penalty=0.0,
                                   )
            else:
                inputs = {k: v.to(self.forward_model.device) for k, v in inputs.items()}
                with torch.no_grad():
                    outputs = self.forward_model.generate(**inputs, max_length=512, num_return_sequences=10,
                                   do_sample=False, num_beams=10,
                                   eos_token_id=self.tokenizer.eos_token_id,
                                   early_stopping='never',
                                   pad_token_id=self.tokenizer.pad_token_id,
                                   length_penalty=0.0,
                                   )

            original_smiles_list = self.tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, len(inputs['input_ids'][0]):],
                                                          skip_special_tokens=True) 
            original_smiles_list = map(lambda x: x.replace(" ", ""), original_smiles_list)
            # canonize the SMILES
            canonized_smiles_list = []
            temp = []
            for original_smiles in original_smiles_list:
                temp.append(original_smiles)
                try:
                    canonized_smiles_list.append(Chem.MolToSmiles(Chem.MolFromSmiles(original_smiles)))
                except:
                    canonized_smiles_list.append("")
            #canonized_smiles_list = \
            #['N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1cc(F)c([N+](=O)[O-])cc1F', 'N#Cc1ccsc1Nc1cc(Cl)c(F)cc1[N+](=O)[O-]', 'N#Cc1cnsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1cc(F)c(F)cc1Nc1sccc1C#N', 'N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=N)[O-]', 'N#Cc1cc(C#N)c(Nc2cc(F)c(F)cc2[N+](=O)[O-])s1', 'N#Cc1ccsc1Nc1c(F)c(F)cc(F)c1[N+](=O)[O-]', 'Nc1sccc1CNc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1ccc(F)cc1[N+](=O)[O-]']
            predictions.append(canonized_smiles_list)
        
        rank, invalid_rate = compute_rank(predictions)
        return rank
    
    def predict_single_smiles(self, smiles, task_type):
        if task_type == "full_retro":
            if "." in smiles:
                return None
        
        task_type = "retrosynthesis" if task_type == "full_retro" else "synthesis"
        # canonicalize the smiles
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            return None
        smiles = Chem.MolToSmiles(mol)

        smiles_list = [smiles]
        task_type_list = [task_type]


        df = pd.DataFrame({"src": smiles_list, "task_type": task_type_list})
        test_dataset = Dataset.from_pandas(df)
        # construct the dataloader
        test_loader = torch.utils.data.DataLoader(
            test_dataset,
            batch_size=1,
            collate_fn=self.data_collator,
        )

        rank = self.predict(test_loader, task_type)

        return rank