Spaces:
Sleeping
Sleeping
File size: 11,364 Bytes
edaff0a 11b6a1c edaff0a f0ad687 edaff0a cd388a2 edaff0a 8412583 edaff0a 8412583 edaff0a d87c5bb edaff0a 8412583 d87c5bb 8412583 edaff0a 8412583 edaff0a 2a0c1ae 4294df8 8412583 edaff0a cd388a2 d87c5bb cd388a2 edaff0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import os
from typing import Optional, Dict, Sequence
import transformers
from peft import PeftModel
import torch
from dataclasses import dataclass, field
from huggingface_hub import hf_hub_download
import json
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
import spaces
from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')
DEFAULT_PAD_TOKEN = "[PAD]"
device_map = "cuda"
def compute_rank(prediction,raw=False,alpha=1.0):
valid_score = [[k for k in range(len(prediction[j]))] for j in range(len(prediction))]
invalid_rates = [0 for k in range(len(prediction[0]))]
rank = {}
highest = {}
for j in range(len(prediction)):
for k in range(len(prediction[j])):
if prediction[j][k] == "":
valid_score[j][k] = 10 + 1
invalid_rates[k] += 1
de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0] != ""]
prediction[j] = list(set(de_error))
prediction[j].sort(key=de_error.index)
for k, data in enumerate(prediction[j]):
if data in rank:
rank[data] += 1 / (alpha * k + 1)
else:
rank[data] = 1 / (alpha * k + 1)
if data in highest:
highest[data] = min(k,highest[data])
else:
highest[data] = k
return rank,invalid_rates
@dataclass
class DataCollatorForCausalLMEval(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
reactant_start_str: str
product_start_str: str
end_str: str
def augment_molecule(self, molecule: str) -> str:
return self.sme.augment([molecule])[0]
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
srcs = instances[0]['src']
task_type = instances[0]['task_type']
if task_type == 'retrosynthesis':
src_start_str = self.product_start_str
tgt_start_str = self.reactant_start_str
else:
src_start_str = self.reactant_start_str
tgt_start_str = self.product_start_str
generation_prompts = []
generation_prompt = f"{src_start_str}{srcs}{self.end_str}{tgt_start_str}"
generation_prompts.append(generation_prompt)
data_dict = {
'generation_prompts': generation_prompts
}
return data_dict
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
non_special_tokens = None,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
num_old_tokens = model.get_input_embeddings().weight.shape[0]
num_new_tokens = len(tokenizer) - num_old_tokens
if num_new_tokens == 0:
return
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")
class ReactionPredictionModel():
def __init__(self, candidate_models):
for model in candidate_models:
if "retro" in model:
self.tokenizer = AutoTokenizer.from_pretrained(
candidate_models[list(candidate_models.keys())[0]],
padding_side="right",
use_fast=True,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.load_retro_model(candidate_models[model])
else:
self.tokenizer = AutoTokenizer.from_pretrained(
candidate_models[list(candidate_models.keys())[0]],
padding_side="right",
use_fast=True,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.load_forward_model(candidate_models[model])
string_template_path = hf_hub_download(candidate_models[list(candidate_models.keys())[0]], filename="string_template.json", token = os.environ.get("TOKEN"))
string_template = json.load(open(string_template_path, 'r'))
reactant_start_str = string_template['REACTANTS_START_STRING']
product_start_str = string_template['PRODUCTS_START_STRING']
end_str = string_template['END_STRING']
self.data_collator = DataCollatorForCausalLMEval(
tokenizer=self.tokenizer,
source_max_len=512,
target_max_len=512,
reactant_start_str=reactant_start_str,
product_start_str=product_start_str,
end_str=end_str,
)
def load_retro_model(self, model_path):
# our retro model is lora model
config = AutoConfig.from_pretrained(
"ChemFM/ChemFM-3B",
trust_remote_code=True,
token=os.environ.get("TOKEN")
)
base_model = AutoModelForCausalLM.from_pretrained(
"ChemFM/ChemFM-3B",
config=config,
trust_remote_code=True,
device_map=device_map,
token = os.environ.get("TOKEN")
)
# we should resize the embedding layer of the base model to match the adapter's tokenizer
special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=self.tokenizer,
model=base_model
)
base_model.config.pad_token_id = self.tokenizer.pad_token_id
# load the adapter model
self.retro_model = PeftModel.from_pretrained(
base_model,
model_path,
token = os.environ.get("TOKEN")
)
self.retro_model.to("cuda")
self.retro_model.eval()
def load_forward_model(self, model_path):
config = AutoConfig.from_pretrained(
model_path,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.forward_model = AutoModelForCausalLM.from_pretrained(
model_path,
config=config,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
# the finetune tokenizer could be in different size with pretrain tokenizer, and also, we need to add PAD_TOKEN
special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=self.tokenizer,
model=self.forward_model
)
self.forward_model.config.pad_token_id = self.tokenizer.pad_token_id
self.forward_model.to("cuda")
self.forward_model.eval()
def predict(self, test_loader, task_type):
predictions = []
for i, batch in tqdm(enumerate(test_loader), total=len(test_loader), desc="Evaluating"):
generation_prompts = batch['generation_prompts'][0]
inputs = self.tokenizer(generation_prompts, return_tensors="pt", padding=True, truncation=True)
del inputs['token_type_ids']
if task_type == "retrosynthesis":
inputs = {k: v.to(self.retro_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.retro_model.generate(**inputs, max_length=512, num_return_sequences=10,
do_sample=False, num_beams=10,
eos_token_id=self.tokenizer.eos_token_id,
early_stopping='never',
pad_token_id=self.tokenizer.pad_token_id,
length_penalty=0.0,
)
else:
inputs = {k: v.to(self.forward_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.forward_model.generate(**inputs, max_length=512, num_return_sequences=10,
do_sample=False, num_beams=10,
eos_token_id=self.tokenizer.eos_token_id,
early_stopping='never',
pad_token_id=self.tokenizer.pad_token_id,
length_penalty=0.0,
)
original_smiles_list = self.tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, len(inputs['input_ids'][0]):],
skip_special_tokens=True)
original_smiles_list = map(lambda x: x.replace(" ", ""), original_smiles_list)
# canonize the SMILES
canonized_smiles_list = []
temp = []
for original_smiles in original_smiles_list:
temp.append(original_smiles)
try:
canonized_smiles_list.append(Chem.MolToSmiles(Chem.MolFromSmiles(original_smiles)))
except:
canonized_smiles_list.append("")
#canonized_smiles_list = \
#['N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1cc(F)c([N+](=O)[O-])cc1F', 'N#Cc1ccsc1Nc1cc(Cl)c(F)cc1[N+](=O)[O-]', 'N#Cc1cnsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1cc(F)c(F)cc1Nc1sccc1C#N', 'N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=N)[O-]', 'N#Cc1cc(C#N)c(Nc2cc(F)c(F)cc2[N+](=O)[O-])s1', 'N#Cc1ccsc1Nc1c(F)c(F)cc(F)c1[N+](=O)[O-]', 'Nc1sccc1CNc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1ccc(F)cc1[N+](=O)[O-]']
predictions.append(canonized_smiles_list)
rank, invalid_rate = compute_rank(predictions)
return rank
def predict_single_smiles(self, smiles, task_type):
if task_type == "full_retro":
if "." in smiles:
return None
task_type = "retrosynthesis" if task_type == "full_retro" else "synthesis"
# canonicalize the smiles
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
smiles = Chem.MolToSmiles(mol)
smiles_list = [smiles]
task_type_list = [task_type]
df = pd.DataFrame({"src": smiles_list, "task_type": task_type_list})
test_dataset = Dataset.from_pandas(df)
# construct the dataloader
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
collate_fn=self.data_collator,
)
rank = self.predict(test_loader, task_type)
return rank
|