Spaces:
Running
on
Zero
Running
on
Zero
feiyang-cai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -34,9 +34,15 @@ task_names = {
|
|
34 |
task_names_to_tasks = {v: k for k, v in task_names.items()}
|
35 |
tasks = list(candidate_models.keys())
|
36 |
task_descriptions = {
|
37 |
-
'mit_synthesis': 'Predict the reaction products given the reactants and reagents
|
38 |
-
'
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
}
|
41 |
|
42 |
#property_names = list(candidate_models.keys())
|
|
|
34 |
task_names_to_tasks = {v: k for k, v in task_names.items()}
|
35 |
tasks = list(candidate_models.keys())
|
36 |
task_descriptions = {
|
37 |
+
'mit_synthesis': 'Predict the reaction products given the reactants and reagents. \n' + \
|
38 |
+
'1. This model is trained on the USPTO MIT dataset. \n' + \
|
39 |
+
'2. The reactants and reagents are mixed in the input SMILES string. \n' + \
|
40 |
+
'3. Different compounds are separated by ".". \n' + \
|
41 |
+
'4. Input SMILES string example: C1CCOC1.N#Cc1ccsc1N.O=[N+]([O-])c1cc(F)c(F)cc1F.[H-].[Na+]',
|
42 |
+
'full_retro': 'Predict the reaction precursors given the reaction products. \n' + \
|
43 |
+
'1. This model is trained on the USPTO Full dataset. \n' + \
|
44 |
+
'2. In this dataset, we consider only a single product in the input SMILES string. \n' + \
|
45 |
+
'3. Input SMILES string example: CC(=O)OCC(=O)[C@@]1(O)CC[C@H]2[C@@H]3CCC4=CC(=O)CC[C@]4(C)C3=CC[C@@]21C'
|
46 |
}
|
47 |
|
48 |
#property_names = list(candidate_models.keys())
|