ChenWu98 commited on
Commit
49c69e8
·
1 Parent(s): 6c161b2

Copy template

Browse files
Files changed (4) hide show
  1. app.py +263 -0
  2. nsfw.png +0 -0
  3. requirements.txt +7 -0
  4. utils.py +6 -0
app.py ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ import utils
6
+
7
+ is_colab = utils.is_google_colab()
8
+
9
+ class Model:
10
+ def __init__(self, name, path, prefix):
11
+ self.name = name
12
+ self.path = path
13
+ self.prefix = prefix
14
+ self.pipe_t2i = None
15
+ self.pipe_i2i = None
16
+
17
+ models = [
18
+ Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
19
+ Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
20
+ Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
21
+ Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
22
+ Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
23
+ Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
24
+ Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
25
+ Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
26
+ Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
27
+ Model("Waifu", "hakurei/waifu-diffusion", ""),
28
+ Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
29
+ Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
30
+ Model("Robo Diffusion", "nousr/robo-diffusion", ""),
31
+ Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
32
+ Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
33
+ ]
34
+
35
+ scheduler = DPMSolverMultistepScheduler(
36
+ beta_start=0.00085,
37
+ beta_end=0.012,
38
+ beta_schedule="scaled_linear",
39
+ num_train_timesteps=1000,
40
+ trained_betas=None,
41
+ predict_epsilon=True,
42
+ thresholding=False,
43
+ algorithm_type="dpmsolver++",
44
+ solver_type="midpoint",
45
+ lower_order_final=True,
46
+ )
47
+
48
+ if is_colab:
49
+ models.insert(0, Model("Custom model", "", ""))
50
+ custom_model = models[0]
51
+
52
+ last_mode = "txt2img"
53
+ current_model = models[1] if is_colab else models[0]
54
+ current_model_path = current_model.path
55
+
56
+ if is_colab:
57
+ pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
58
+
59
+ else: # download all models
60
+ vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
61
+ for model in models[1:]:
62
+ try:
63
+ unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
64
+ model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
65
+ model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
66
+ except:
67
+ models.remove(model)
68
+ pipe = models[1].pipe_t2i
69
+
70
+ if torch.cuda.is_available():
71
+ pipe = pipe.to("cuda")
72
+
73
+ device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
74
+
75
+ def custom_model_changed(path):
76
+ models[0].path = path
77
+ global current_model
78
+ current_model = models[0]
79
+
80
+ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", inpaint_image=None):
81
+
82
+ global current_model
83
+ for model in models:
84
+ if model.name == model_name:
85
+ current_model = model
86
+ model_path = current_model.path
87
+
88
+ generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
89
+
90
+ if img is not None:
91
+ return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
92
+ else:
93
+ return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, inpaint_image)
94
+
95
+ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None, inpaint_image=None):
96
+
97
+ global last_mode
98
+ global pipe
99
+ global current_model_path
100
+ if model_path != current_model_path or last_mode != "txt2img":
101
+ current_model_path = model_path
102
+
103
+ if is_colab or current_model == custom_model:
104
+ pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
105
+ else:
106
+ pipe.to("cpu")
107
+ pipe = current_model.pipe_t2i
108
+
109
+ if torch.cuda.is_available():
110
+ pipe = pipe.to("cuda")
111
+ last_mode = "txt2img"
112
+
113
+ prompt = current_model.prefix + prompt
114
+
115
+ if inpaint_image is not None:
116
+ init_image = inpaint_image["image"].convert("RGB").resize((width, height))
117
+ mask = inpaint_image["mask"].convert("RGB").resize((width, height))
118
+
119
+ result = pipe(
120
+ prompt,
121
+ negative_prompt = neg_prompt,
122
+ # num_images_per_prompt=n_images,
123
+ image = init_image,
124
+ mask_image = mask,
125
+ num_inference_steps = int(steps),
126
+ guidance_scale = guidance,
127
+ width = width,
128
+ height = height,
129
+ generator = generator)
130
+
131
+ return replace_nsfw_images(result)
132
+
133
+ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
134
+
135
+ global last_mode
136
+ global pipe
137
+ global current_model_path
138
+ if model_path != current_model_path or last_mode != "img2img":
139
+ current_model_path = model_path
140
+
141
+ if is_colab or current_model == custom_model:
142
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
143
+ else:
144
+ pipe.to("cpu")
145
+ pipe = current_model.pipe_i2i
146
+
147
+ if torch.cuda.is_available():
148
+ pipe = pipe.to("cuda")
149
+ last_mode = "img2img"
150
+
151
+ prompt = current_model.prefix + prompt
152
+ ratio = min(height / img.height, width / img.width)
153
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
154
+ result = pipe(
155
+ prompt,
156
+ negative_prompt = neg_prompt,
157
+ # num_images_per_prompt=n_images,
158
+ init_image = img,
159
+ num_inference_steps = int(steps),
160
+ strength = strength,
161
+ guidance_scale = guidance,
162
+ width = width,
163
+ height = height,
164
+ generator = generator)
165
+
166
+ return replace_nsfw_images(result)
167
+
168
+ def replace_nsfw_images(results):
169
+ for i in range(len(results.images)):
170
+ if results.nsfw_content_detected[i]:
171
+ results.images[i] = Image.open("nsfw.png")
172
+ return results.images[0]
173
+
174
+ css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
175
+ """
176
+ with gr.Blocks(css=css) as demo:
177
+ gr.HTML(
178
+ f"""
179
+ <div class="finetuned-diffusion-div">
180
+ <div>
181
+ <h1>Finetuned Diffusion</h1>
182
+ </div>
183
+ <p>
184
+ Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
185
+ <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
186
+ </p>
187
+ <p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
188
+ Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
189
+ </p>
190
+ </div>
191
+ """
192
+ )
193
+ with gr.Row():
194
+
195
+ with gr.Column(scale=55):
196
+ with gr.Group():
197
+ model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
198
+ with gr.Box(visible=False) as custom_model_group:
199
+ custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
200
+ gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
201
+
202
+ with gr.Row():
203
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
204
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
205
+
206
+
207
+ image_out = gr.Image(height=512)
208
+ # gallery = gr.Gallery(
209
+ # label="Generated images", show_label=False, elem_id="gallery"
210
+ # ).style(grid=[1], height="auto")
211
+
212
+ with gr.Column(scale=45):
213
+ with gr.Tab("Options"):
214
+ with gr.Group():
215
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
216
+
217
+ # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
218
+
219
+ with gr.Row():
220
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
221
+ steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
222
+
223
+ with gr.Row():
224
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
225
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
226
+
227
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
228
+
229
+ with gr.Tab("Image to image"):
230
+ with gr.Group():
231
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
232
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
233
+
234
+ with gr.Tab("Inpainting"):
235
+ inpaint_image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload").style(height=256)
236
+
237
+ model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
238
+ if is_colab:
239
+ custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
240
+ # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
241
+
242
+ inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, inpaint_image]
243
+ prompt.submit(inference, inputs=inputs, outputs=image_out)
244
+ generate.click(inference, inputs=inputs, outputs=image_out)
245
+
246
+ ex = gr.Examples([
247
+ [models[1].name, "jason bateman disassembling the demon core", 7.5, 50],
248
+ [models[4].name, "portrait of dwayne johnson", 7.0, 75],
249
+ [models[5].name, "portrait of a beautiful alyx vance half life", 10, 50],
250
+ [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
251
+ [models[5].name, "fantasy portrait painting, digital art", 4.0, 30],
252
+ ], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
253
+
254
+ gr.Markdown('''
255
+ Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@haruu1367](https://twitter.com/haruu1367), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
256
+ Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
257
+
258
+ ![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
259
+ ''')
260
+
261
+ if not is_colab:
262
+ demo.queue(concurrency_count=1)
263
+ demo.launch(debug=is_colab, share=is_colab)
nsfw.png ADDED
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ torch
3
+ git+https://github.com/huggingface/diffusers.git
4
+ transformers
5
+ scipy
6
+ ftfy
7
+ accelerate
utils.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ def is_google_colab():
2
+ try:
3
+ import google.colab
4
+ return True
5
+ except:
6
+ return False