Spaces:
Runtime error
Runtime error
File size: 4,690 Bytes
f807e7d 175c5c3 f807e7d 175c5c3 f807e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import json
import time
import random
import gradio as gr
import pandas as pd
from utils.gpt_processor import QuestionAnswerer
qa_processor = QuestionAnswerer()
current_file = None
context = None
with open("final_result.json", 'r', encoding='UTF-8') as fp:
db = json.load(fp)
def read_examples():
df = pd.read_csv(r'examples.csv')
return [f"我想了解有關於「{keyword}」的文件" for keyword in df['word'].tolist()]
def user(message, history):
#return gr.update(value="", interactive=False), history + [[message, None]]
return "", history + [[message, None]]
def bot(history):
user_message = history[-1][0]
global current_file
global context
#check if user input has "我想了解"
if "我想了解" in user_message:
# get keyword from "「」"
keyword = user_message.split("「")[1].split("」")[0]
# check if keyword is in db
file_list = []
for key in db.keys():
if keyword in db[key]['keywords']:
file_list.append(key)
if len(file_list) == 0:
response = [
[user_message, "Sorry, I can't find any documents about this topic. Please try again."],
]
else:
bot_message = "以下是我所找到的文件:"
for file in file_list:
bot_message += "\n" + file
bot_message += "\n\n" + "請複製貼上想要了解的文件,我會給你該文件的摘要"
response = [
[user_message, bot_message],
]
history = response
# history[-1][1] = ""
# for character in bot_message:
# history[-1][1] += character
# time.sleep(random.uniform(0.01, 0.05))
# yield history
return history
# check if user input has a pdf file name
if ".pdf" in user_message or ".docx" in user_message:
current_file = user_message
context = db[current_file]['file_full_content']
# check if file name is in db
if user_message in db.keys():
bot_message = f"文件 {user_message} 的摘要如下:"
bot_message += "\n\n" + db[user_message]['summarized_content']
bot_message += "\n\n" + "可以透過詢問來了解更多這個文件的內容"
response = [
[user_message, bot_message],
]
else:
response = [
[user_message, "Sorry, I can't find this file. Please try again."],
]
history[-1] = response[0]
# history[-1][1] = ""
# for character in bot_message:
# history[-1][1] += character
# time.sleep(random.uniform(0.01, 0.05))
# yield history
return history
if context is None:
response = [
[user_message, "請輸入一個文件名稱或是點選下方的範例"],
]
history[-1] = response[0]
return history
if context is not None:
bot_message = qa_processor.answer_question(context, user_message)
response = [
[user_message, bot_message],
]
history[-1] = response[0]
return history
with gr.Blocks() as demo:
history = gr.State([])
user_question = gr.State("")
with gr.Row():
gr.HTML('Junyi Academy Chatbot')
#status_display = gr.Markdown("Success", elem_id="status_display")
with gr.Row(equal_height=True):
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Enter text",
container=False,
)
# with gr.Column(min_width=70, scale=1):
# submit_btn = gr.Button("Send")
with gr.Column(min_width=70, scale=1):
clear_btn = gr.Button("Clear")
response = user_input.submit(user,
[user_input, chatbot],
[user_input, chatbot],
queue=False,
).then(bot, chatbot, chatbot)
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
clear_btn.click(lambda: None, None, chatbot, queue=False)
examples = gr.Examples(examples=read_examples(),
inputs=[user_input])
if __name__ == "__main__":
demo.launch(share=True)
|