ChenyuRabbitLove's picture
feat: modify upload to db description
fdc352d
import gradio as gr
from utils.chatbot import Chatbot, VideoChatbot
from utils.utils import *
def create_new_model():
return Chatbot()
# start of gradio interface
with gr.Blocks() as demo:
user_chatbot = gr.State(create_new_model)
test_video_chabot = gr.State(VideoChatbot())
with gr.Row():
gr.HTML("Junyi Academy Chatbot")
with gr.Row(equal_height=True):
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False,
placeholder="Enter text",
container=False,
)
with gr.Column(min_width=70, scale=1):
clear_btn = gr.Button("清除")
with gr.Column(min_width=70, scale=1):
submit_btn = gr.Button("傳送")
with gr.Row():
index_file = gr.File(
file_count="multiple", file_types=["pdf"], label="Upload PDF file", scale=3
)
upload_to_db = gr.CheckboxGroup(
["Upload to Database"],
label="是否上傳至資料庫", info="須在上傳檔案前勾選(將資料上傳至資料庫時,資料庫會自動建立索引,下次使用時可以直接檢索,無勾選則僅作這次使用)", scale=1
)
with gr.Row():
instruction = gr.Markdown(
"""
## 使用說明
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
2. 在上方輸入欄輸入問題,系統將自動回覆
3. 可以根據下方的摘要內容來提問
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
5. 要切換檢索的文件,請點選「清除」按鈕後再重新提問
""",
)
with gr.Row():
describe = gr.Markdown("", visible=True)
with gr.Row():
video_text_input = gr.Textbox("", visible=False)
video_text_output = gr.Textbox("", visible=False)
transcript_id = gr.Textbox("", visible=False)
user_question = gr.Textbox("", visible=False)
content_output = gr.Textbox("", visible=False)
# end of gradio interface
# start of workflow controller
# defining workflow of user bot interaction
bot_args = dict(
fn=bot,
inputs=user_chatbot,
outputs=chatbot,
)
user_args = dict(
fn=user,
inputs=[user_chatbot, user_input],
outputs=[user_input, chatbot],
queue=False,
)
response = user_input.submit(**user_args).then(**bot_args)
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
submit_btn.click(
**user_args,
).then(
**bot_args
).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
# defining workflow of clear state
clear_state_args = dict(
fn=clear_state,
inputs=user_chatbot,
outputs=None,
)
clear_btn.click(**clear_state_args)
# defining workflow of building knowledge base
send_system_nofification_args = dict(
fn=send_system_nofification,
inputs=user_chatbot,
outputs=chatbot,
)
bulid_knowledge_base_args = dict(
fn=build_knowledge_base,
inputs=[user_chatbot, index_file, upload_to_db],
outputs=None,
)
change_md_args = dict(
fn=change_md,
inputs=[user_chatbot],
outputs=[describe],
)
index_file.upload(**send_system_nofification_args).then(
lambda: gr.update(interactive=True), None, None, queue=False
).then(**bulid_knowledge_base_args).then(**send_system_nofification_args).then(
lambda: gr.update(interactive=True), None, None, queue=False
).then(
**change_md_args
)
video_text_input.submit(video_bot, [test_video_chabot, video_text_input], video_text_output, api_name="video_bot")
transcript_id.submit(search_transcript_content, [transcript_id, user_question], content_output, api_name="search_transcript_content")
if __name__ == "__main__":
demo.launch()