Spaces:
Runtime error
Runtime error
ChenyuRabbitLove
commited on
Commit
·
b95388b
1
Parent(s):
2e4fd32
refactor/ enable mutiple usage
Browse files- app.py +67 -135
- utils/chatbot.py +122 -0
- utils/utils.py +21 -0
- utils/work_flow_controller.py +1 -3
app.py
CHANGED
@@ -11,126 +11,25 @@ from openai.embeddings_utils import distances_from_embeddings
|
|
11 |
|
12 |
from utils.gpt_processor import QuestionAnswerer
|
13 |
from utils.work_flow_controller import WorkFlowController
|
14 |
-
|
15 |
-
|
16 |
-
CSV_FILE_PATHS = ''
|
17 |
-
JSON_FILE_PATHS = ''
|
18 |
-
KNOWLEDGE_BASE = None
|
19 |
-
CONTEXT = None
|
20 |
-
CONTEXT_PAGE_NUM = None
|
21 |
-
CONTEXT_FILE_NAME = None
|
22 |
-
|
23 |
-
def build_knowledge_base(files):
|
24 |
-
global CSV_FILE_PATHS
|
25 |
-
global JSON_FILE_PATHS
|
26 |
-
global KNOWLEDGE_BASE
|
27 |
-
|
28 |
-
work_flow_controller = WorkFlowController(files)
|
29 |
-
CSV_FILE_PATHS = work_flow_controller.csv_result_path
|
30 |
-
JSON_FILE_PATHS = work_flow_controller.result_path
|
31 |
-
with open(CSV_FILE_PATHS, 'r', encoding='UTF-8') as fp:
|
32 |
-
knowledge_base = pd.read_csv(fp)
|
33 |
-
knowledge_base['page_embedding'] = knowledge_base['page_embedding'].apply(eval).apply(np.array)
|
34 |
-
KNOWLEDGE_BASE = knowledge_base
|
35 |
-
|
36 |
-
def construct_summary():
|
37 |
-
with open(JSON_FILE_PATHS, 'r', encoding='UTF-8') as fp:
|
38 |
-
knowledge_base = json.load(fp)
|
39 |
-
|
40 |
-
context = """"""
|
41 |
-
for key in knowledge_base.keys():
|
42 |
-
file_name = knowledge_base[key]['file_name']
|
43 |
-
total_page = knowledge_base[key]['total_pages']
|
44 |
-
summary = knowledge_base[key]['summarized_content']
|
45 |
-
file_context = f"""
|
46 |
-
### 文件摘要
|
47 |
-
{file_name} (共 {total_page} 頁)<br><br>
|
48 |
-
{summary}<br><br>
|
49 |
-
"""
|
50 |
-
context += file_context
|
51 |
-
return context
|
52 |
-
|
53 |
-
def change_md():
|
54 |
-
content = construct_summary()
|
55 |
-
return gr.Markdown.update(content, visible=True)
|
56 |
-
|
57 |
-
def user(message, history):
|
58 |
-
return "", history + [[message, None]]
|
59 |
-
|
60 |
-
def system_notification(action):
|
61 |
-
if action == 'upload':
|
62 |
-
return [['已上傳文件', '文件處理中(摘要、翻譯等),結束後將自動回覆']]
|
63 |
-
else:
|
64 |
-
return [['已上傳文件', '文件處理完成,請開始提問']]
|
65 |
-
|
66 |
-
def get_index_file(user_message):
|
67 |
-
global KNOWLEDGE_BASE
|
68 |
-
global CONTEXT
|
69 |
-
global CONTEXT_PAGE_NUM
|
70 |
-
global CONTEXT_FILE_NAME
|
71 |
-
|
72 |
-
user_message_embedding = openai.Embedding.create(input=user_message, engine='text-embedding-ada-002')['data'][0]['embedding']
|
73 |
-
KNOWLEDGE_BASE['distance'] = distances_from_embeddings(user_message_embedding, KNOWLEDGE_BASE['page_embedding'].values, distance_metric='cosine')
|
74 |
-
KNOWLEDGE_BASE = KNOWLEDGE_BASE.sort_values(by='distance', ascending=True).head(1)
|
75 |
-
if KNOWLEDGE_BASE['distance'].values[0] > 0.2:
|
76 |
-
CONTEXT = None
|
77 |
-
else:
|
78 |
-
|
79 |
-
CONTEXT = KNOWLEDGE_BASE['page_content'].values[0]
|
80 |
-
CONTEXT_PAGE_NUM = KNOWLEDGE_BASE['page_num'].values[0]
|
81 |
-
CONTEXT_FILE_NAME = KNOWLEDGE_BASE['file_name'].values[0]
|
82 |
-
|
83 |
-
def bot(history):
|
84 |
-
user_message = history[-1][0]
|
85 |
-
global CONTEXT
|
86 |
-
print(f'user_message: {user_message}')
|
87 |
-
|
88 |
-
if KNOWLEDGE_BASE is None:
|
89 |
-
response = [
|
90 |
-
[user_message, "請先上傳文件"],
|
91 |
-
]
|
92 |
-
history = response
|
93 |
-
return history
|
94 |
-
elif CONTEXT is None:
|
95 |
-
get_index_file(user_message)
|
96 |
-
print(f'CONTEXT: {CONTEXT}')
|
97 |
-
if CONTEXT is None:
|
98 |
-
response = [
|
99 |
-
[user_message, "無法找到相關文件,請重新提問"],
|
100 |
-
]
|
101 |
-
history = response
|
102 |
-
return history
|
103 |
-
else:
|
104 |
-
pass
|
105 |
-
|
106 |
-
if CONTEXT is not None:
|
107 |
-
bot_message = qa_processor.answer_question(CONTEXT, CONTEXT_PAGE_NUM, CONTEXT_FILE_NAME, history)
|
108 |
-
print(f'bot_message: {bot_message}')
|
109 |
-
response = [
|
110 |
-
[user_message, bot_message],
|
111 |
-
]
|
112 |
-
history[-1] = response[0]
|
113 |
-
return history
|
114 |
|
115 |
-
def
|
116 |
-
|
117 |
-
|
118 |
-
global CONTEXT_PAGE_NUM
|
119 |
-
global CONTEXT_FILE_NAME
|
120 |
-
|
121 |
-
CONTEXT = None
|
122 |
-
CONTEXT_PAGE_NUM = None
|
123 |
-
CONTEXT_FILE_NAME = None
|
124 |
-
KNOWLEDGE_BASE = None
|
125 |
|
126 |
with gr.Blocks() as demo:
|
127 |
history = gr.State([])
|
128 |
-
upload_state = gr.State("upload")
|
129 |
-
finished = gr.State("finished")
|
130 |
user_question = gr.State("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
with gr.Row():
|
132 |
gr.HTML('Junyi Academy Chatbot')
|
133 |
-
#status_display = gr.Markdown("Success", elem_id="status_display")
|
134 |
with gr.Row(equal_height=True):
|
135 |
with gr.Column(scale=5):
|
136 |
with gr.Row():
|
@@ -143,53 +42,86 @@ with gr.Blocks() as demo:
|
|
143 |
placeholder="Enter text",
|
144 |
container=False,
|
145 |
)
|
146 |
-
|
147 |
-
# submit_btn = gr.Button("Send")
|
148 |
with gr.Column(min_width=70, scale=1):
|
149 |
clear_btn = gr.Button("清除")
|
150 |
with gr.Column(min_width=70, scale=1):
|
151 |
submit_btn = gr.Button("傳送")
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
submit_btn.click(user,
|
163 |
[user_input, chatbot],
|
164 |
[user_input, chatbot],
|
165 |
chatbot,
|
166 |
-
queue=False).then(
|
|
|
167 |
|
168 |
-
clear_btn.click(clear_state, None, None, queue=False)
|
169 |
|
170 |
with gr.Row():
|
171 |
index_file = gr.File(file_count="multiple", file_types=["pdf"], label="Upload PDF file")
|
172 |
|
173 |
with gr.Row():
|
174 |
instruction = gr.Markdown("""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
""")
|
182 |
|
183 |
with gr.Row():
|
184 |
describe = gr.Markdown('', visible=True)
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
188 |
-
.then(
|
189 |
-
.then(
|
190 |
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
191 |
-
.then(
|
192 |
-
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
demo.launch()
|
|
|
11 |
|
12 |
from utils.gpt_processor import QuestionAnswerer
|
13 |
from utils.work_flow_controller import WorkFlowController
|
14 |
+
from utils.chatbot import Chatbot
|
15 |
+
from utils.utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def create_chatbot():
|
18 |
+
bot = Chatbot()
|
19 |
+
return bot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
with gr.Blocks() as demo:
|
22 |
history = gr.State([])
|
|
|
|
|
23 |
user_question = gr.State("")
|
24 |
+
chatbot_utils = Chatbot()
|
25 |
+
|
26 |
+
user_chatbot = gr.State(Chatbot())
|
27 |
+
|
28 |
+
upload_state = gr.State("wating")
|
29 |
+
finished = gr.State("finished")
|
30 |
+
|
31 |
with gr.Row():
|
32 |
gr.HTML('Junyi Academy Chatbot')
|
|
|
33 |
with gr.Row(equal_height=True):
|
34 |
with gr.Column(scale=5):
|
35 |
with gr.Row():
|
|
|
42 |
placeholder="Enter text",
|
43 |
container=False,
|
44 |
)
|
45 |
+
|
|
|
46 |
with gr.Column(min_width=70, scale=1):
|
47 |
clear_btn = gr.Button("清除")
|
48 |
with gr.Column(min_width=70, scale=1):
|
49 |
submit_btn = gr.Button("傳送")
|
50 |
|
51 |
+
bot_args = dict(
|
52 |
+
fn=bot,
|
53 |
+
inputs=user_chatbot,
|
54 |
+
outputs=chatbot,
|
55 |
+
)
|
|
|
56 |
|
57 |
+
user_args = dict(
|
58 |
+
fn=user,
|
59 |
+
inputs=[user_chatbot, user_input],
|
60 |
+
outputs=[user_input, chatbot],
|
61 |
+
queue=False,
|
62 |
+
)
|
63 |
+
|
64 |
+
response = user_input.submit(**user_args).then(**bot_args)
|
65 |
+
|
66 |
+
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
67 |
|
68 |
submit_btn.click(user,
|
69 |
[user_input, chatbot],
|
70 |
[user_input, chatbot],
|
71 |
chatbot,
|
72 |
+
queue=False).then(**bot_args).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
73 |
+
|
74 |
|
|
|
75 |
|
76 |
with gr.Row():
|
77 |
index_file = gr.File(file_count="multiple", file_types=["pdf"], label="Upload PDF file")
|
78 |
|
79 |
with gr.Row():
|
80 |
instruction = gr.Markdown("""
|
81 |
+
## 使用說明
|
82 |
+
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
|
83 |
+
2. 在上方輸入欄輸入問題,系統將自動回覆
|
84 |
+
3. 可以根據下方的摘要內容來提問
|
85 |
+
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
|
86 |
+
5. 要切換檢索的文件,請點選「清除對話記錄」按鈕後再重新提問
|
87 |
""")
|
88 |
|
89 |
with gr.Row():
|
90 |
describe = gr.Markdown('', visible=True)
|
91 |
|
92 |
+
|
93 |
+
clear_state_args = dict(
|
94 |
+
fn=clear_state,
|
95 |
+
inputs=user_chatbot,
|
96 |
+
outputs=None,
|
97 |
+
)
|
98 |
+
|
99 |
+
clear_btn.click(**clear_state_args)
|
100 |
+
|
101 |
+
send_system_nofification_args = dict(
|
102 |
+
fn=send_system_nofification,
|
103 |
+
inputs=user_chatbot,
|
104 |
+
outputs=chatbot,
|
105 |
+
)
|
106 |
+
|
107 |
+
bulid_knowledge_base_args = dict(
|
108 |
+
fn=build_knowledge_base,
|
109 |
+
inputs=[user_chatbot, index_file],
|
110 |
+
outputs=None,
|
111 |
+
)
|
112 |
+
|
113 |
+
change_md_args = dict(
|
114 |
+
fn=change_md,
|
115 |
+
inputs=[user_chatbot],
|
116 |
+
outputs=[describe],
|
117 |
+
)
|
118 |
+
|
119 |
+
index_file.upload(**send_system_nofification_args) \
|
120 |
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
121 |
+
.then(**bulid_knowledge_base_args) \
|
122 |
+
.then(**send_system_nofification_args) \
|
123 |
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
124 |
+
.then(**change_md_args)
|
|
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
demo.launch()
|
utils/chatbot.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import openai
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from openai.embeddings_utils import distances_from_embeddings
|
8 |
+
|
9 |
+
from .work_flow_controller import WorkFlowController
|
10 |
+
from .gpt_processor import QuestionAnswerer
|
11 |
+
|
12 |
+
class Chatbot():
|
13 |
+
def __init__(self) -> None:
|
14 |
+
self.history = []
|
15 |
+
self.upload_state = 'waiting'
|
16 |
+
|
17 |
+
self.knowledge_base = None
|
18 |
+
self.context = None
|
19 |
+
self.context_page_num = None
|
20 |
+
self.context_file_name = None
|
21 |
+
|
22 |
+
|
23 |
+
def build_knowledge_base(self, files):
|
24 |
+
work_flow_controller = WorkFlowController(files)
|
25 |
+
self.csv_result_path = work_flow_controller.csv_result_path
|
26 |
+
self.json_result_path = work_flow_controller.json_result_path
|
27 |
+
|
28 |
+
with open(self.csv_result_path, 'r', encoding='UTF-8') as fp:
|
29 |
+
knowledge_base = pd.read_csv(fp)
|
30 |
+
knowledge_base['page_embedding'] = knowledge_base['page_embedding'].apply(eval).apply(np.array)
|
31 |
+
|
32 |
+
self.knowledge_base = knowledge_base
|
33 |
+
self.upload_state = 'done'
|
34 |
+
|
35 |
+
def clear_state(self):
|
36 |
+
self.context = None
|
37 |
+
self.context_page_num = None
|
38 |
+
self.context_file_name = None
|
39 |
+
self.upload_state = 'waiting'
|
40 |
+
self.history = []
|
41 |
+
|
42 |
+
def send_system_nofification(self):
|
43 |
+
if self.upload_state == 'waiting':
|
44 |
+
conversation = [['已上傳文件', '文件處理中(摘要、翻譯等),結束後將自動回覆']]
|
45 |
+
return conversation
|
46 |
+
elif self.upload_state == 'done':
|
47 |
+
conversation = [['已上傳文件', '文件處理完成,請開始提問']]
|
48 |
+
return conversation
|
49 |
+
|
50 |
+
def change_md(self):
|
51 |
+
content = self.__construct_summary()
|
52 |
+
return gr.Markdown.update(content, visible=True)
|
53 |
+
|
54 |
+
def __construct_summary(self):
|
55 |
+
with open(self.json_result_path, 'r', encoding='UTF-8') as fp:
|
56 |
+
knowledge_base = json.load(fp)
|
57 |
+
|
58 |
+
context = """"""
|
59 |
+
for key in knowledge_base.keys():
|
60 |
+
file_name = knowledge_base[key]['file_name']
|
61 |
+
total_page = knowledge_base[key]['total_pages']
|
62 |
+
summary = knowledge_base[key]['summarized_content']
|
63 |
+
file_context = f"""
|
64 |
+
### 文件摘要
|
65 |
+
{file_name} (共 {total_page} 頁)<br><br>
|
66 |
+
{summary}<br><br>
|
67 |
+
"""
|
68 |
+
context += file_context
|
69 |
+
return context
|
70 |
+
|
71 |
+
def user(self, message):
|
72 |
+
self.history += [[message, None]]
|
73 |
+
return "", self.history
|
74 |
+
|
75 |
+
def bot(self):
|
76 |
+
user_message = self.history[-1][0]
|
77 |
+
print(f'user_message: {user_message}')
|
78 |
+
|
79 |
+
if self.knowledge_base is None:
|
80 |
+
response = [
|
81 |
+
[user_message, "請先上傳文件"],
|
82 |
+
]
|
83 |
+
self.history = response
|
84 |
+
return self.history
|
85 |
+
elif self.context is None:
|
86 |
+
self.__get_index_file(user_message)
|
87 |
+
print(f'CONTEXT: {self.context}')
|
88 |
+
if self.context is None:
|
89 |
+
response = [
|
90 |
+
[user_message, "無法找到相關文件,請重新提問"],
|
91 |
+
]
|
92 |
+
self.history = response
|
93 |
+
return self.history
|
94 |
+
else:
|
95 |
+
pass
|
96 |
+
|
97 |
+
if self.context is not None:
|
98 |
+
qa_processor = QuestionAnswerer()
|
99 |
+
bot_message = qa_processor.answer_question(
|
100 |
+
self.context,
|
101 |
+
self.context_page_num,
|
102 |
+
self.context_file_name,
|
103 |
+
self.history
|
104 |
+
)
|
105 |
+
print(f'bot_message: {bot_message}')
|
106 |
+
response = [
|
107 |
+
[user_message, bot_message],
|
108 |
+
]
|
109 |
+
self.history[-1] = response[0]
|
110 |
+
return self.history
|
111 |
+
|
112 |
+
def __get_index_file(self, user_message):
|
113 |
+
user_message_embedding = openai.Embedding.create(input=user_message, engine='text-embedding-ada-002')['data'][0]['embedding']
|
114 |
+
self.knowledge_base['distance'] = distances_from_embeddings(user_message_embedding, self.knowledge_base['page_embedding'].values, distance_metric='cosine')
|
115 |
+
self.knowledge_base = self.knowledge_base.sort_values(by='distance', ascending=True).head(1)
|
116 |
+
|
117 |
+
if self.knowledge_base['distance'].values[0] > 0.2:
|
118 |
+
self.context = None
|
119 |
+
else:
|
120 |
+
self.context = self.knowledge_base['page_content'].values[0]
|
121 |
+
self.context_page_num = self.knowledge_base['page_num'].values[0]
|
122 |
+
self.context_file_name = self.knowledge_base['file_name'].values[0]
|
utils/utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def clear_state(chatbot, *args):
|
3 |
+
return chatbot.clear_state(*args)
|
4 |
+
|
5 |
+
def send_system_nofification(chatbot, *args):
|
6 |
+
return chatbot.send_system_nofification(*args)
|
7 |
+
|
8 |
+
def build_knowledge_base(chatbot, *args):
|
9 |
+
return chatbot.build_knowledge_base(*args)
|
10 |
+
|
11 |
+
def change_md(chatbot, *args):
|
12 |
+
return chatbot.change_md(*args)
|
13 |
+
|
14 |
+
def get_index_file(chatbot, *args):
|
15 |
+
return chatbot.get_index_file(*args)
|
16 |
+
|
17 |
+
def user(chatbot, *args):
|
18 |
+
return chatbot.user(*args)
|
19 |
+
|
20 |
+
def bot(chatbot, *args):
|
21 |
+
return chatbot.bot(*args)
|
utils/work_flow_controller.py
CHANGED
@@ -84,14 +84,12 @@ class WorkFlowController():
|
|
84 |
file = self.__translate_to_chinese(file)
|
85 |
file = self.__get_embedding(file)
|
86 |
file = self.__get_summary(file)
|
87 |
-
# file = self.__get_keywords(file)
|
88 |
-
# file = self.__get_topics(file)
|
89 |
return file
|
90 |
|
91 |
def __dump_to_json(self):
|
92 |
with open(os.path.join(os.getcwd(), 'knowledge_base.json'), 'w', encoding='utf-8') as f:
|
93 |
print("Dumping to json, the path is: " + os.path.join(os.getcwd(), 'knowledge_base.json'))
|
94 |
-
self.
|
95 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
96 |
|
97 |
def __construct_knowledge_base_dataframe(self):
|
|
|
84 |
file = self.__translate_to_chinese(file)
|
85 |
file = self.__get_embedding(file)
|
86 |
file = self.__get_summary(file)
|
|
|
|
|
87 |
return file
|
88 |
|
89 |
def __dump_to_json(self):
|
90 |
with open(os.path.join(os.getcwd(), 'knowledge_base.json'), 'w', encoding='utf-8') as f:
|
91 |
print("Dumping to json, the path is: " + os.path.join(os.getcwd(), 'knowledge_base.json'))
|
92 |
+
self.json_result_path = os.path.join(os.getcwd(), 'knowledge_base.json')
|
93 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
94 |
|
95 |
def __construct_knowledge_base_dataframe(self):
|