Spaces:
Runtime error
Runtime error
ChenyuRabbitLove
commited on
Commit
·
e873140
1
Parent(s):
ca406a4
Revert "fix/ format and modify __get_index_file sequence"
Browse filesThis reverts commit 89eba912dc6d3bd3743bef5335bb251459ad49fc.
- app.py +62 -50
- utils/chatbot.py +48 -56
- utils/docx_processor.py +11 -15
- utils/pdf_processor.py +18 -21
- utils/utils.py +2 -7
- utils/work_flow_controller.py +29 -58
app.py
CHANGED
@@ -1,14 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
from utils.chatbot import Chatbot
|
4 |
from utils.utils import *
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# start of gradio interface
|
7 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
8 |
user_chatbot = gr.State(Chatbot())
|
|
|
|
|
|
|
9 |
|
10 |
with gr.Row():
|
11 |
-
gr.HTML(
|
12 |
with gr.Row(equal_height=True):
|
13 |
with gr.Column(scale=5):
|
14 |
with gr.Row():
|
@@ -27,55 +48,48 @@ with gr.Blocks() as demo:
|
|
27 |
with gr.Column(min_width=70, scale=1):
|
28 |
submit_btn = gr.Button("傳送")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
with gr.Row():
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
## 使用說明
|
39 |
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
|
40 |
2. 在上方輸入欄輸入問題,系統將自動回覆
|
41 |
3. 可以根據下方的摘要內容來提問
|
42 |
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
|
43 |
-
5.
|
44 |
-
"""
|
45 |
-
)
|
46 |
|
47 |
with gr.Row():
|
48 |
-
describe = gr.Markdown(
|
49 |
-
|
50 |
-
# end of gradio interface
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
# defining workflow of user bot interaction
|
55 |
-
bot_args = dict(
|
56 |
-
fn=bot,
|
57 |
-
inputs=user_chatbot,
|
58 |
-
outputs=chatbot,
|
59 |
-
)
|
60 |
-
|
61 |
-
user_args = dict(
|
62 |
-
fn=user,
|
63 |
-
inputs=[user_chatbot, user_input],
|
64 |
-
outputs=[user_input, chatbot],
|
65 |
-
queue=False,
|
66 |
-
)
|
67 |
-
|
68 |
-
response = user_input.submit(**user_args).then(**bot_args)
|
69 |
-
|
70 |
-
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
71 |
-
|
72 |
-
submit_btn.click(
|
73 |
-
**user_args,
|
74 |
-
).then(
|
75 |
-
**bot_args
|
76 |
-
).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
77 |
-
|
78 |
-
# defining workflow of clear state
|
79 |
clear_state_args = dict(
|
80 |
fn=clear_state,
|
81 |
inputs=user_chatbot,
|
@@ -84,7 +98,6 @@ with gr.Blocks() as demo:
|
|
84 |
|
85 |
clear_btn.click(**clear_state_args)
|
86 |
|
87 |
-
# defining workflow of building knowledge base
|
88 |
send_system_nofification_args = dict(
|
89 |
fn=send_system_nofification,
|
90 |
inputs=user_chatbot,
|
@@ -103,13 +116,12 @@ with gr.Blocks() as demo:
|
|
103 |
outputs=[describe],
|
104 |
)
|
105 |
|
106 |
-
index_file.upload(**send_system_nofification_args)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
if __name__ == "__main__":
|
115 |
demo.launch()
|
|
|
1 |
+
import json
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
|
6 |
+
import openai
|
7 |
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
from openai.embeddings_utils import distances_from_embeddings
|
11 |
|
12 |
+
from utils.gpt_processor import QuestionAnswerer
|
13 |
+
from utils.work_flow_controller import WorkFlowController
|
14 |
from utils.chatbot import Chatbot
|
15 |
from utils.utils import *
|
16 |
+
|
17 |
+
def create_chatbot():
|
18 |
+
bot = Chatbot()
|
19 |
+
return bot
|
20 |
|
|
|
21 |
with gr.Blocks() as demo:
|
22 |
+
history = gr.State([])
|
23 |
+
user_question = gr.State("")
|
24 |
+
chatbot_utils = Chatbot()
|
25 |
+
|
26 |
user_chatbot = gr.State(Chatbot())
|
27 |
+
|
28 |
+
upload_state = gr.State("wating")
|
29 |
+
finished = gr.State("finished")
|
30 |
|
31 |
with gr.Row():
|
32 |
+
gr.HTML('Junyi Academy Chatbot')
|
33 |
with gr.Row(equal_height=True):
|
34 |
with gr.Column(scale=5):
|
35 |
with gr.Row():
|
|
|
48 |
with gr.Column(min_width=70, scale=1):
|
49 |
submit_btn = gr.Button("傳送")
|
50 |
|
51 |
+
bot_args = dict(
|
52 |
+
fn=bot,
|
53 |
+
inputs=user_chatbot,
|
54 |
+
outputs=chatbot,
|
55 |
+
)
|
56 |
+
|
57 |
+
user_args = dict(
|
58 |
+
fn=user,
|
59 |
+
inputs=[user_chatbot, user_input],
|
60 |
+
outputs=[user_input, chatbot],
|
61 |
+
queue=False,
|
62 |
+
)
|
63 |
+
|
64 |
+
response = user_input.submit(**user_args).then(**bot_args)
|
65 |
+
|
66 |
+
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
67 |
+
|
68 |
+
submit_btn.click(user,
|
69 |
+
[user_input, chatbot],
|
70 |
+
[user_input, chatbot],
|
71 |
+
chatbot,
|
72 |
+
queue=False).then(**bot_args).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
73 |
+
|
74 |
+
|
75 |
|
76 |
with gr.Row():
|
77 |
+
index_file = gr.File(file_count="multiple", file_types=["pdf"], label="Upload PDF file")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
instruction = gr.Markdown("""
|
81 |
## 使用說明
|
82 |
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
|
83 |
2. 在上方輸入欄輸入問題,系統將自動回覆
|
84 |
3. 可以根據下方的摘要內容來提問
|
85 |
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
|
86 |
+
5. 要切換檢索的文件,請點選「清除對話記錄」按鈕後再重新提問
|
87 |
+
""")
|
|
|
88 |
|
89 |
with gr.Row():
|
90 |
+
describe = gr.Markdown('', visible=True)
|
|
|
|
|
91 |
|
92 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
clear_state_args = dict(
|
94 |
fn=clear_state,
|
95 |
inputs=user_chatbot,
|
|
|
98 |
|
99 |
clear_btn.click(**clear_state_args)
|
100 |
|
|
|
101 |
send_system_nofification_args = dict(
|
102 |
fn=send_system_nofification,
|
103 |
inputs=user_chatbot,
|
|
|
116 |
outputs=[describe],
|
117 |
)
|
118 |
|
119 |
+
index_file.upload(**send_system_nofification_args) \
|
120 |
+
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
121 |
+
.then(**bulid_knowledge_base_args) \
|
122 |
+
.then(**send_system_nofification_args) \
|
123 |
+
.then(lambda: gr.update(interactive=True), None, None, queue=False) \
|
124 |
+
.then(**change_md_args)
|
125 |
+
|
|
|
126 |
if __name__ == "__main__":
|
127 |
demo.launch()
|
utils/chatbot.py
CHANGED
@@ -9,59 +9,57 @@ from openai.embeddings_utils import distances_from_embeddings
|
|
9 |
from .work_flow_controller import WorkFlowController
|
10 |
from .gpt_processor import QuestionAnswerer
|
11 |
|
12 |
-
|
13 |
-
class Chatbot:
|
14 |
def __init__(self) -> None:
|
15 |
self.history = []
|
16 |
-
self.upload_state =
|
17 |
-
|
18 |
self.knowledge_base = None
|
19 |
self.context = None
|
20 |
self.context_page_num = None
|
21 |
self.context_file_name = None
|
|
|
22 |
|
23 |
def build_knowledge_base(self, files):
|
24 |
work_flow_controller = WorkFlowController(files)
|
25 |
self.csv_result_path = work_flow_controller.csv_result_path
|
26 |
self.json_result_path = work_flow_controller.json_result_path
|
27 |
|
28 |
-
with open(self.csv_result_path,
|
29 |
knowledge_base = pd.read_csv(fp)
|
30 |
-
knowledge_base[
|
31 |
-
knowledge_base["page_embedding"].apply(eval).apply(np.array)
|
32 |
-
)
|
33 |
|
34 |
self.knowledge_base = knowledge_base
|
35 |
-
self.upload_state =
|
36 |
|
37 |
def clear_state(self):
|
38 |
self.context = None
|
39 |
self.context_page_num = None
|
40 |
self.context_file_name = None
|
41 |
-
self.upload_state =
|
42 |
self.history = []
|
43 |
|
44 |
def send_system_nofification(self):
|
45 |
-
if self.upload_state ==
|
46 |
-
conversation = [[
|
47 |
return conversation
|
48 |
-
elif self.upload_state ==
|
49 |
-
conversation = [[
|
50 |
return conversation
|
51 |
-
|
52 |
def change_md(self):
|
53 |
content = self.__construct_summary()
|
54 |
return gr.Markdown.update(content, visible=True)
|
55 |
-
|
56 |
def __construct_summary(self):
|
57 |
-
with open(self.json_result_path,
|
58 |
knowledge_base = json.load(fp)
|
59 |
|
60 |
context = """"""
|
61 |
for key in knowledge_base.keys():
|
62 |
-
file_name = knowledge_base[key][
|
63 |
-
total_page = knowledge_base[key][
|
64 |
-
summary = knowledge_base[key][
|
65 |
file_context = f"""
|
66 |
### 文件摘要
|
67 |
{file_name} (共 {total_page} 頁)<br><br>
|
@@ -69,14 +67,14 @@ class Chatbot:
|
|
69 |
"""
|
70 |
context += file_context
|
71 |
return context
|
72 |
-
|
73 |
def user(self, message):
|
74 |
self.history += [[message, None]]
|
75 |
return "", self.history
|
76 |
-
|
77 |
def bot(self):
|
78 |
user_message = self.history[-1][0]
|
79 |
-
print(f
|
80 |
|
81 |
if self.knowledge_base is None:
|
82 |
response = [
|
@@ -84,47 +82,41 @@ class Chatbot:
|
|
84 |
]
|
85 |
self.history = response
|
86 |
return self.history
|
87 |
-
|
88 |
-
else:
|
89 |
self.__get_index_file(user_message)
|
|
|
90 |
if self.context is None:
|
91 |
response = [
|
92 |
[user_message, "無法找到相關文件,請重新提問"],
|
93 |
]
|
94 |
self.history = response
|
95 |
return self.history
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
def __get_index_file(self, user_message):
|
112 |
-
user_message_embedding = openai.Embedding.create(
|
113 |
-
|
114 |
-
)
|
115 |
-
|
116 |
-
self.knowledge_base["distance"] = distances_from_embeddings(
|
117 |
-
user_message_embedding,
|
118 |
-
self.knowledge_base["page_embedding"].values,
|
119 |
-
distance_metric="cosine",
|
120 |
-
)
|
121 |
-
self.knowledge_base = self.knowledge_base.sort_values(
|
122 |
-
by="distance", ascending=True
|
123 |
-
)
|
124 |
|
125 |
-
if self.knowledge_base[
|
126 |
self.context = None
|
127 |
else:
|
128 |
-
self.context = self.knowledge_base[
|
129 |
-
self.context_page_num = self.knowledge_base[
|
130 |
-
self.context_file_name = self.knowledge_base[
|
|
|
9 |
from .work_flow_controller import WorkFlowController
|
10 |
from .gpt_processor import QuestionAnswerer
|
11 |
|
12 |
+
class Chatbot():
|
|
|
13 |
def __init__(self) -> None:
|
14 |
self.history = []
|
15 |
+
self.upload_state = 'waiting'
|
16 |
+
|
17 |
self.knowledge_base = None
|
18 |
self.context = None
|
19 |
self.context_page_num = None
|
20 |
self.context_file_name = None
|
21 |
+
|
22 |
|
23 |
def build_knowledge_base(self, files):
|
24 |
work_flow_controller = WorkFlowController(files)
|
25 |
self.csv_result_path = work_flow_controller.csv_result_path
|
26 |
self.json_result_path = work_flow_controller.json_result_path
|
27 |
|
28 |
+
with open(self.csv_result_path, 'r', encoding='UTF-8') as fp:
|
29 |
knowledge_base = pd.read_csv(fp)
|
30 |
+
knowledge_base['page_embedding'] = knowledge_base['page_embedding'].apply(eval).apply(np.array)
|
|
|
|
|
31 |
|
32 |
self.knowledge_base = knowledge_base
|
33 |
+
self.upload_state = 'done'
|
34 |
|
35 |
def clear_state(self):
|
36 |
self.context = None
|
37 |
self.context_page_num = None
|
38 |
self.context_file_name = None
|
39 |
+
self.upload_state = 'waiting'
|
40 |
self.history = []
|
41 |
|
42 |
def send_system_nofification(self):
|
43 |
+
if self.upload_state == 'waiting':
|
44 |
+
conversation = [['已上傳文件', '文件處理中(摘要、翻譯等),結束後將自動回覆']]
|
45 |
return conversation
|
46 |
+
elif self.upload_state == 'done':
|
47 |
+
conversation = [['已上傳文件', '文件處理完成,請開始提問']]
|
48 |
return conversation
|
49 |
+
|
50 |
def change_md(self):
|
51 |
content = self.__construct_summary()
|
52 |
return gr.Markdown.update(content, visible=True)
|
53 |
+
|
54 |
def __construct_summary(self):
|
55 |
+
with open(self.json_result_path, 'r', encoding='UTF-8') as fp:
|
56 |
knowledge_base = json.load(fp)
|
57 |
|
58 |
context = """"""
|
59 |
for key in knowledge_base.keys():
|
60 |
+
file_name = knowledge_base[key]['file_name']
|
61 |
+
total_page = knowledge_base[key]['total_pages']
|
62 |
+
summary = knowledge_base[key]['summarized_content']
|
63 |
file_context = f"""
|
64 |
### 文件摘要
|
65 |
{file_name} (共 {total_page} 頁)<br><br>
|
|
|
67 |
"""
|
68 |
context += file_context
|
69 |
return context
|
70 |
+
|
71 |
def user(self, message):
|
72 |
self.history += [[message, None]]
|
73 |
return "", self.history
|
74 |
+
|
75 |
def bot(self):
|
76 |
user_message = self.history[-1][0]
|
77 |
+
print(f'user_message: {user_message}')
|
78 |
|
79 |
if self.knowledge_base is None:
|
80 |
response = [
|
|
|
82 |
]
|
83 |
self.history = response
|
84 |
return self.history
|
85 |
+
elif self.context is None:
|
|
|
86 |
self.__get_index_file(user_message)
|
87 |
+
print(f'CONTEXT: {self.context}')
|
88 |
if self.context is None:
|
89 |
response = [
|
90 |
[user_message, "無法找到相關文件,請重新提問"],
|
91 |
]
|
92 |
self.history = response
|
93 |
return self.history
|
94 |
+
else:
|
95 |
+
pass
|
96 |
+
|
97 |
+
if self.context is not None:
|
98 |
+
qa_processor = QuestionAnswerer()
|
99 |
+
bot_message = qa_processor.answer_question(
|
100 |
+
self.context,
|
101 |
+
self.context_page_num,
|
102 |
+
self.context_file_name,
|
103 |
+
self.history
|
104 |
+
)
|
105 |
+
print(f'bot_message: {bot_message}')
|
106 |
+
response = [
|
107 |
+
[user_message, bot_message],
|
108 |
+
]
|
109 |
+
self.history[-1] = response[0]
|
110 |
+
return self.history
|
111 |
+
|
112 |
def __get_index_file(self, user_message):
|
113 |
+
user_message_embedding = openai.Embedding.create(input=user_message, engine='text-embedding-ada-002')['data'][0]['embedding']
|
114 |
+
self.knowledge_base['distance'] = distances_from_embeddings(user_message_embedding, self.knowledge_base['page_embedding'].values, distance_metric='cosine')
|
115 |
+
self.knowledge_base = self.knowledge_base.sort_values(by='distance', ascending=True).head(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
if self.knowledge_base['distance'].values[0] > 0.2:
|
118 |
self.context = None
|
119 |
else:
|
120 |
+
self.context = self.knowledge_base['page_content'].values[0]
|
121 |
+
self.context_page_num = self.knowledge_base['page_num'].values[0]
|
122 |
+
self.context_file_name = self.knowledge_base['file_name'].values[0]
|
utils/docx_processor.py
CHANGED
@@ -6,14 +6,13 @@ import docx2txt
|
|
6 |
|
7 |
from gpt_processor import Translator
|
8 |
|
9 |
-
|
10 |
class DOCXProcessor:
|
11 |
def __init__(self, file_path: str) -> None:
|
12 |
self.file_path = file_path
|
13 |
self.file_info = {
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
}
|
18 |
self.__build_info()
|
19 |
|
@@ -21,24 +20,21 @@ class DOCXProcessor:
|
|
21 |
try:
|
22 |
text = docx2txt.process(self.file_path)
|
23 |
text = unicodedata.normalize("NFKD", text)
|
24 |
-
text = text.replace(
|
25 |
-
text = re.sub(
|
26 |
-
self.file_info[
|
27 |
|
28 |
tranlator = Translator()
|
29 |
-
self.file_info[
|
30 |
-
tranlator.translate_to_chinese(text)
|
31 |
-
if not self.file_info["is_chinese"]
|
32 |
-
else text
|
33 |
-
)
|
34 |
|
|
|
35 |
except FileNotFoundError:
|
36 |
print(f"File not found: {self.file_path}")
|
37 |
except Exception as e:
|
38 |
print(f"An error occurred: {str(e)}")
|
39 |
-
|
40 |
def __is_chinese(self, text: str) -> bool:
|
41 |
for char in text:
|
42 |
-
if char >=
|
43 |
return True
|
44 |
-
return False
|
|
|
6 |
|
7 |
from gpt_processor import Translator
|
8 |
|
|
|
9 |
class DOCXProcessor:
|
10 |
def __init__(self, file_path: str) -> None:
|
11 |
self.file_path = file_path
|
12 |
self.file_info = {
|
13 |
+
'file_name': self.file_path.split('/')[-1],
|
14 |
+
'file_format': 'DOCX',
|
15 |
+
'file_full_content': '',
|
16 |
}
|
17 |
self.__build_info()
|
18 |
|
|
|
20 |
try:
|
21 |
text = docx2txt.process(self.file_path)
|
22 |
text = unicodedata.normalize("NFKD", text)
|
23 |
+
text = text.replace('\n', ' ').replace('\r', '')
|
24 |
+
text = re.sub(' +', ' ', text)
|
25 |
+
self.file_info['is_chinese'] = self.__is_chinese(text)
|
26 |
|
27 |
tranlator = Translator()
|
28 |
+
self.file_info['file_full_content'] = tranlator.translate_to_chinese(text) if not self.file_info['is_chinese'] else text
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
|
31 |
except FileNotFoundError:
|
32 |
print(f"File not found: {self.file_path}")
|
33 |
except Exception as e:
|
34 |
print(f"An error occurred: {str(e)}")
|
35 |
+
|
36 |
def __is_chinese(self, text: str) -> bool:
|
37 |
for char in text:
|
38 |
+
if char >= '\u4e00' and char <= '\u9fff':
|
39 |
return True
|
40 |
+
return False
|
utils/pdf_processor.py
CHANGED
@@ -5,48 +5,45 @@ import logging
|
|
5 |
|
6 |
from .gpt_processor import Translator
|
7 |
|
8 |
-
|
9 |
class PDFProcessor:
|
10 |
def __init__(self, file_path: str) -> None:
|
11 |
self.file_path = file_path
|
12 |
self.file_info = {
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
}
|
20 |
self.__build_info()
|
21 |
|
22 |
def __build_info(self) -> None:
|
23 |
try:
|
24 |
-
with open(self.file_path,
|
25 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
26 |
pages = len(pdf_reader.pages)
|
27 |
-
self.file_info[
|
28 |
for i, page in enumerate(pdf_reader.pages):
|
29 |
text = page.extract_text()
|
30 |
text = unicodedata.normalize("NFKD", text)
|
31 |
-
text = text.replace(
|
32 |
-
text = re.sub(
|
33 |
-
self.file_info[
|
34 |
|
35 |
page_info = {}
|
36 |
logging.info(f"Processing page {i + 1}...")
|
37 |
-
page_info[
|
38 |
-
page_info[
|
39 |
-
self.file_info[
|
40 |
-
self.file_info[
|
41 |
-
self.file_info["file_full_content"] + page_info["page_content"]
|
42 |
-
)
|
43 |
except FileNotFoundError:
|
44 |
print(f"File not found: {self.file_path}")
|
45 |
except Exception as e:
|
46 |
print(f"An error occurred: {str(e)}")
|
47 |
-
|
48 |
def __is_chinese(self, text: str) -> bool:
|
49 |
for char in text:
|
50 |
-
if char >=
|
51 |
return True
|
52 |
-
return False
|
|
|
5 |
|
6 |
from .gpt_processor import Translator
|
7 |
|
|
|
8 |
class PDFProcessor:
|
9 |
def __init__(self, file_path: str) -> None:
|
10 |
self.file_path = file_path
|
11 |
self.file_info = {
|
12 |
+
'file_name': self.file_path.split('/')[-1],
|
13 |
+
'file_format': 'PDF',
|
14 |
+
'total_pages': 0,
|
15 |
+
'file_content': {},
|
16 |
+
'file_full_content': '',
|
17 |
+
'is_chinese': '',
|
18 |
}
|
19 |
self.__build_info()
|
20 |
|
21 |
def __build_info(self) -> None:
|
22 |
try:
|
23 |
+
with open(self.file_path, 'rb') as pdf_file:
|
24 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
pages = len(pdf_reader.pages)
|
26 |
+
self.file_info['total_pages'] = pages
|
27 |
for i, page in enumerate(pdf_reader.pages):
|
28 |
text = page.extract_text()
|
29 |
text = unicodedata.normalize("NFKD", text)
|
30 |
+
text = text.replace('\n', ' ').replace('\r', '')
|
31 |
+
text = re.sub(' +', ' ', text)
|
32 |
+
self.file_info['is_chinese'] = self.__is_chinese(text)
|
33 |
|
34 |
page_info = {}
|
35 |
logging.info(f"Processing page {i + 1}...")
|
36 |
+
page_info['page_num'] = i + 1
|
37 |
+
page_info['page_content'] = text
|
38 |
+
self.file_info['file_content'][i + 1] = page_info
|
39 |
+
self.file_info['file_full_content'] = self.file_info['file_full_content'] + page_info['page_content']
|
|
|
|
|
40 |
except FileNotFoundError:
|
41 |
print(f"File not found: {self.file_path}")
|
42 |
except Exception as e:
|
43 |
print(f"An error occurred: {str(e)}")
|
44 |
+
|
45 |
def __is_chinese(self, text: str) -> bool:
|
46 |
for char in text:
|
47 |
+
if char >= '\u4e00' and char <= '\u9fff':
|
48 |
return True
|
49 |
+
return False
|
utils/utils.py
CHANGED
@@ -1,26 +1,21 @@
|
|
|
|
1 |
def clear_state(chatbot, *args):
|
2 |
return chatbot.clear_state(*args)
|
3 |
|
4 |
-
|
5 |
def send_system_nofification(chatbot, *args):
|
6 |
return chatbot.send_system_nofification(*args)
|
7 |
|
8 |
-
|
9 |
def build_knowledge_base(chatbot, *args):
|
10 |
return chatbot.build_knowledge_base(*args)
|
11 |
|
12 |
-
|
13 |
def change_md(chatbot, *args):
|
14 |
return chatbot.change_md(*args)
|
15 |
|
16 |
-
|
17 |
def get_index_file(chatbot, *args):
|
18 |
return chatbot.get_index_file(*args)
|
19 |
|
20 |
-
|
21 |
def user(chatbot, *args):
|
22 |
return chatbot.user(*args)
|
23 |
|
24 |
-
|
25 |
def bot(chatbot, *args):
|
26 |
-
return chatbot.bot(*args)
|
|
|
1 |
+
|
2 |
def clear_state(chatbot, *args):
|
3 |
return chatbot.clear_state(*args)
|
4 |
|
|
|
5 |
def send_system_nofification(chatbot, *args):
|
6 |
return chatbot.send_system_nofification(*args)
|
7 |
|
|
|
8 |
def build_knowledge_base(chatbot, *args):
|
9 |
return chatbot.build_knowledge_base(*args)
|
10 |
|
|
|
11 |
def change_md(chatbot, *args):
|
12 |
return chatbot.change_md(*args)
|
13 |
|
|
|
14 |
def get_index_file(chatbot, *args):
|
15 |
return chatbot.get_index_file(*args)
|
16 |
|
|
|
17 |
def user(chatbot, *args):
|
18 |
return chatbot.user(*args)
|
19 |
|
|
|
20 |
def bot(chatbot, *args):
|
21 |
+
return chatbot.bot(*args)
|
utils/work_flow_controller.py
CHANGED
@@ -5,21 +5,15 @@ import hashlib
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
-
from .gpt_processor import (
|
9 |
-
|
10 |
-
KeywordsGenerator,
|
11 |
-
Summarizer,
|
12 |
-
TopicsGenerator,
|
13 |
-
Translator,
|
14 |
-
)
|
15 |
from .pdf_processor import PDFProcessor
|
16 |
|
17 |
processors = {
|
18 |
-
|
19 |
}
|
20 |
|
21 |
-
|
22 |
-
class WorkFlowController:
|
23 |
def __init__(self, file_src) -> None:
|
24 |
# check if the file_path is list
|
25 |
# self.file_paths = self.__get_file_name(file_src)
|
@@ -30,8 +24,8 @@ class WorkFlowController:
|
|
30 |
self.files_info = {}
|
31 |
|
32 |
for file_path in self.file_paths:
|
33 |
-
file_name = file_path.split(
|
34 |
-
file_format = file_path.split(
|
35 |
self.file_processor = processors[file_format]
|
36 |
file = self.file_processor(file_path).file_info
|
37 |
file = self.__process_file(file)
|
@@ -40,25 +34,24 @@ class WorkFlowController:
|
|
40 |
self.__dump_to_json()
|
41 |
self.__dump_to_csv()
|
42 |
|
|
|
43 |
def __get_summary(self, file: dict):
|
44 |
# get summary from file content
|
45 |
-
|
46 |
summarizer = Summarizer()
|
47 |
-
file[
|
48 |
return file
|
49 |
|
50 |
def __get_keywords(self, file: dict):
|
51 |
# get keywords from file content
|
52 |
keywords_generator = KeywordsGenerator()
|
53 |
-
file[
|
54 |
-
file["file_full_content"]
|
55 |
-
)
|
56 |
return file
|
57 |
|
58 |
def __get_topics(self, file: dict):
|
59 |
# get topics from file content
|
60 |
topics_generator = TopicsGenerator()
|
61 |
-
file[
|
62 |
return file
|
63 |
|
64 |
def __get_embedding(self, file):
|
@@ -66,54 +59,41 @@ class WorkFlowController:
|
|
66 |
# return embedding
|
67 |
embedding_generator = EmbeddingGenerator()
|
68 |
|
69 |
-
for i, _ in enumerate(file[
|
70 |
# use i+1 to meet the index of file_content
|
71 |
-
file[
|
72 |
-
"page_embedding"
|
73 |
-
] = embedding_generator.get_embedding(
|
74 |
-
file["file_content"][i + 1]["page_content"]
|
75 |
-
)
|
76 |
return file
|
|
|
77 |
|
78 |
def __translate_to_chinese(self, file: dict):
|
79 |
# translate file content to chinese
|
80 |
translator = Translator()
|
81 |
# reset the file full content
|
82 |
-
file[
|
83 |
|
84 |
-
for i, _ in enumerate(file[
|
85 |
# use i+1 to meet the index of file_content
|
86 |
-
file[
|
87 |
-
|
88 |
-
] = translator.translate_to_chinese(
|
89 |
-
file["file_content"][i + 1]["page_content"]
|
90 |
-
)
|
91 |
-
file["file_full_content"] = (
|
92 |
-
file["file_full_content"] + file["file_content"][i + 1]["page_content"]
|
93 |
-
)
|
94 |
return file
|
95 |
-
|
96 |
def __process_file(self, file: dict):
|
97 |
# process file content
|
98 |
# return processed data
|
99 |
-
if not file[
|
100 |
file = self.__translate_to_chinese(file)
|
101 |
file = self.__get_embedding(file)
|
102 |
file = self.__get_summary(file)
|
103 |
return file
|
104 |
|
105 |
def __dump_to_json(self):
|
106 |
-
with open(
|
107 |
-
os.path.join(os.getcwd(),
|
108 |
-
|
109 |
-
print(
|
110 |
-
"Dumping to json, the path is: "
|
111 |
-
+ os.path.join(os.getcwd(), "knowledge_base.json")
|
112 |
-
)
|
113 |
-
self.json_result_path = os.path.join(os.getcwd(), "knowledge_base.json")
|
114 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
115 |
|
116 |
def __construct_knowledge_base_dataframe(self):
|
|
|
117 |
rows = []
|
118 |
for file_path, content in self.files_info.items():
|
119 |
file_full_content = content["file_full_content"]
|
@@ -127,24 +107,15 @@ class WorkFlowController:
|
|
127 |
}
|
128 |
rows.append(row)
|
129 |
|
130 |
-
columns = [
|
131 |
-
"file_name",
|
132 |
-
"page_num",
|
133 |
-
"page_content",
|
134 |
-
"page_embedding",
|
135 |
-
"file_full_content",
|
136 |
-
]
|
137 |
df = pd.DataFrame(rows, columns=columns)
|
138 |
return df
|
139 |
|
140 |
def __dump_to_csv(self):
|
141 |
df = self.__construct_knowledge_base_dataframe()
|
142 |
-
df.to_csv(os.path.join(os.getcwd(),
|
143 |
-
print(
|
144 |
-
|
145 |
-
+ os.path.join(os.getcwd(), "knowledge_base.csv")
|
146 |
-
)
|
147 |
-
self.csv_result_path = os.path.join(os.getcwd(), "knowledge_base.csv")
|
148 |
|
149 |
def __get_file_name(self, file_src):
|
150 |
file_paths = [x.name for x in file_src]
|
@@ -156,4 +127,4 @@ class WorkFlowController:
|
|
156 |
while chunk := f.read(8192):
|
157 |
md5_hash.update(chunk)
|
158 |
|
159 |
-
return md5_hash.hexdigest()
|
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from .gpt_processor import (EmbeddingGenerator, KeywordsGenerator, Summarizer,
|
9 |
+
TopicsGenerator, Translator)
|
|
|
|
|
|
|
|
|
|
|
10 |
from .pdf_processor import PDFProcessor
|
11 |
|
12 |
processors = {
|
13 |
+
'pdf': PDFProcessor,
|
14 |
}
|
15 |
|
16 |
+
class WorkFlowController():
|
|
|
17 |
def __init__(self, file_src) -> None:
|
18 |
# check if the file_path is list
|
19 |
# self.file_paths = self.__get_file_name(file_src)
|
|
|
24 |
self.files_info = {}
|
25 |
|
26 |
for file_path in self.file_paths:
|
27 |
+
file_name = file_path.split('/')[-1]
|
28 |
+
file_format = file_path.split('.')[-1]
|
29 |
self.file_processor = processors[file_format]
|
30 |
file = self.file_processor(file_path).file_info
|
31 |
file = self.__process_file(file)
|
|
|
34 |
self.__dump_to_json()
|
35 |
self.__dump_to_csv()
|
36 |
|
37 |
+
|
38 |
def __get_summary(self, file: dict):
|
39 |
# get summary from file content
|
40 |
+
|
41 |
summarizer = Summarizer()
|
42 |
+
file['summarized_content'] = summarizer.summarize(file['file_full_content'])
|
43 |
return file
|
44 |
|
45 |
def __get_keywords(self, file: dict):
|
46 |
# get keywords from file content
|
47 |
keywords_generator = KeywordsGenerator()
|
48 |
+
file['keywords'] = keywords_generator.extract_keywords(file['file_full_content'])
|
|
|
|
|
49 |
return file
|
50 |
|
51 |
def __get_topics(self, file: dict):
|
52 |
# get topics from file content
|
53 |
topics_generator = TopicsGenerator()
|
54 |
+
file['topics'] = topics_generator.extract_topics(file['file_full_content'])
|
55 |
return file
|
56 |
|
57 |
def __get_embedding(self, file):
|
|
|
59 |
# return embedding
|
60 |
embedding_generator = EmbeddingGenerator()
|
61 |
|
62 |
+
for i, _ in enumerate(file['file_content']):
|
63 |
# use i+1 to meet the index of file_content
|
64 |
+
file['file_content'][i+1]['page_embedding'] = embedding_generator.get_embedding(file['file_content'][i+1]['page_content'])
|
|
|
|
|
|
|
|
|
65 |
return file
|
66 |
+
|
67 |
|
68 |
def __translate_to_chinese(self, file: dict):
|
69 |
# translate file content to chinese
|
70 |
translator = Translator()
|
71 |
# reset the file full content
|
72 |
+
file['file_full_content'] = ''
|
73 |
|
74 |
+
for i, _ in enumerate(file['file_content']):
|
75 |
# use i+1 to meet the index of file_content
|
76 |
+
file['file_content'][i+1]['page_content'] = translator.translate_to_chinese(file['file_content'][i+1]['page_content'])
|
77 |
+
file['file_full_content'] = file['file_full_content'] + file['file_content'][i+1]['page_content']
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return file
|
79 |
+
|
80 |
def __process_file(self, file: dict):
|
81 |
# process file content
|
82 |
# return processed data
|
83 |
+
if not file['is_chinese']:
|
84 |
file = self.__translate_to_chinese(file)
|
85 |
file = self.__get_embedding(file)
|
86 |
file = self.__get_summary(file)
|
87 |
return file
|
88 |
|
89 |
def __dump_to_json(self):
|
90 |
+
with open(os.path.join(os.getcwd(), 'knowledge_base.json'), 'w', encoding='utf-8') as f:
|
91 |
+
print("Dumping to json, the path is: " + os.path.join(os.getcwd(), 'knowledge_base.json'))
|
92 |
+
self.json_result_path = os.path.join(os.getcwd(), 'knowledge_base.json')
|
|
|
|
|
|
|
|
|
|
|
93 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
94 |
|
95 |
def __construct_knowledge_base_dataframe(self):
|
96 |
+
|
97 |
rows = []
|
98 |
for file_path, content in self.files_info.items():
|
99 |
file_full_content = content["file_full_content"]
|
|
|
107 |
}
|
108 |
rows.append(row)
|
109 |
|
110 |
+
columns = ["file_name", "page_num", "page_content", "page_embedding", "file_full_content"]
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
df = pd.DataFrame(rows, columns=columns)
|
112 |
return df
|
113 |
|
114 |
def __dump_to_csv(self):
|
115 |
df = self.__construct_knowledge_base_dataframe()
|
116 |
+
df.to_csv(os.path.join(os.getcwd(), 'knowledge_base.csv'), index=False)
|
117 |
+
print("Dumping to csv, the path is: " + os.path.join(os.getcwd(), 'knowledge_base.csv'))
|
118 |
+
self.csv_result_path = os.path.join(os.getcwd(), 'knowledge_base.csv')
|
|
|
|
|
|
|
119 |
|
120 |
def __get_file_name(self, file_src):
|
121 |
file_paths = [x.name for x in file_src]
|
|
|
127 |
while chunk := f.read(8192):
|
128 |
md5_hash.update(chunk)
|
129 |
|
130 |
+
return md5_hash.hexdigest()
|