File size: 2,134 Bytes
a447435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import utils.constants as constants_utils
import requests
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from mosestokenizer import *
from indicnlp.tokenize import sentence_tokenize
from googletrans import Translator, constants


class TRANSLATOR:
	def __init__(self):
		print()


	def split_sentences(self, paragraph, language):
		if language == "en":
			with MosesSentenceSplitter(language) as splitter:
				return splitter([paragraph])
		elif language in constants_utils.INDIC_LANGUAGE:
			return sentence_tokenize.sentence_split(paragraph, lang=language)


	def get_in_hindi(self, payload):
		tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
		model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
		article = self.split_sentences(payload['inputs'], 'en')
		# inputs = tokenizer(payload['input'], return_tensors="pt")
		out_text = ""
		for a in article:
			inputs = tokenizer(a, return_tensors="pt")
			translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["hin_Deva"], max_length=100)
			translated_sent = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
			out_text = out_text.join(translated_sent)
		return out_text


	def get_in_indic(self, text, language='Hindi'):
		tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
		model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
		inputs = tokenizer(text, return_tensors="pt")
		
		code = "eng_Latn"
		if language == 'Hindi':
			code= "hin_Deva"
		elif language == 'Marathi':
			code = "mar_Deva"

		translated_tokens = model.generate(
			**inputs,
			forced_bos_token_id=tokenizer.lang_code_to_id[code],
			max_length=1000
		)
		
		out_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
		return out_text


	def get_indic_google_translate(self, text, language='Hindi'):
		# Init the Google API translator
		translator = Translator()
		translations = translator.translate(text, dest=constants_utils.INDIC_LANGUAGE.get(language, 'en'))
		return str(translations.text)